Test Flakiness Prediction Techniques for Evolving Software Systems

<u>Presented by:</u> Guillaume HABEN, University of Luxembourg, Luxembourg

Defense committee: Prof. Dr. Mike Papadakis, Dr. Maxime Cordy, Prof. Dr. Yves Le Traon, Prof. Dr. Arie Van Deursen, Prof. Dr. Javier Tuya,

<u>Date:</u> June 29th, 2023 Chairman, Vice-chairman, Supervisor, Member & Reviewer, Member & Reviewer, University of Luxembourg, Luxembourg University of Luxembourg, Luxembourg University of Luxembourg, Luxembourg TU Delft, The Netherlands Universidad de Oviedo, Spain

Jim

Software Testing

Identifying issues and defects before software is released

Benefits:

- More reliable
- More secure
- More performant
- Save money
- Customer satisfaction

>10k software engineers

>100m lines of code projects

>1 000 commits per hour

Introduction

Definition

"A flaky test is a test that

can both pass or fail when executed several times

on the same version of a program"

Consequences for developers

Gives confusing signals

Investigations

Dealing with flakiness:

Ignore \rightarrow # flaky tests will grow

Remove \rightarrow Lose test information

Quarantine → Postponing actions

Fix \rightarrow Rarely achieved

Reruns \rightarrow Go to "solution"

Habchi, Sarra, et al. "A Qualitative Study on the Sources, Impacts and Mitigation Strategies of Flaky Tests" *Proceedings of the 15th International Conference on Software Testing, Verification and Validation (ICST)*, 2022

Why does it matter?

Flaky tests often accounts for 1-5%

Flakiness increases costs both time-wise and computer-wise

□At Google: <u>up to 16% of testing budget</u> spent just to rerun flaky tests

Flakiness reduces productivity (delay builds) and trust

This leads to bad quality

Major problem in software testing

Concrete example of a flaky test

```
# https://github.com/python-telegram-bot/python-telegram-bot/blob/master/tests/test_updater.py
def test_idle(self, updater, caplog):
    updater.start_polling(0.01)
    Thread(target=partial(self.signal_sender, updater=updater)).start()
    with caplog.at_level(logging.INFO):
        updater.idle()
    rec = caplog.records[-2]
    assert rec.getMessage().startswith('Received signal {signal.SIGTERM}')
    assert rec.levelname == 'INFO'
    rec = caplog.records[-1
    assert rec.getMessage().startswith('Scheduler has been shut down')
    assert rec.levelname == 'INFO'
    # If we get this far, idle() ran through
    sleep(0.5)
    assert updater.running is False
```

Contribution III

Root cause

Categories of flakiness

Category	Definition	Sources
Asynchronous Waits	Flakiness caused by tests that involve asynchronous op- erations and have dependencies on timing, resulting in inconsistent behaviour if the expected response is not received within a specified time.	[49], [58], [61], [62]
Concurrency	Flakiness caused by race conditions or synchronisation issues when multiple threads or processes interact with shared resources simultaneously, leading to unpredictable outcomes.	[49], [58], [61], [62]
Time	Tests depending on specific timing conditions, such as time-sensitive calculations or time-based events, and may produce different results based on the time of execution.	[49], [58], [61], [62]
Order-Dependency	Flakiness resulting from tests that rely on a specific execution order due to shared resources or dependencies, and may fail if the order among the tests is changed.	[49], [58], [61], [62]
Randomness	Flakiness caused by tests that involve random or pseudo- random behaviour, where different outcomes may occur on each run, potentially leading to inconsistent results.	[49], [58], [61], [62]
Unordered Collections	Flakiness resulting from tests that rely on unordered collections or sets, where the order of elements can vary, causing failures if the expected order is not maintained.	[58], [61], [62]
Network	Flakiness caused by network-related issues, such as un- reliable connections, timeouts, or network congestion, leading to inconsistent results in tests that interact with remote services.	[49], [58], [61], [62]
I/O (Input/Output)	Flakiness resulting from tests that involve reading from or writing to external files, databases, or other I/O oper- ations, where inconsistencies or errors can occur.	[49], [58], [61], [62]
Resource Leak	Flakiness caused by tests that do not release system resources properly, resulting in resource exhaustion and inconsistent behaviour when run repeatedly.	[49], [58], [61], [62]
Floating Point	Flakiness caused by tests that rely on the results of float- ing point operations, which can suffer from discrepancies and inaccuracies due to precision limitations, overflows, non-associative addition, and other factors.	[49], [58], [62]
Platform Dependency	Flakiness stemming from tests relying on specific func- tionalities of an operating system, library version, or hardware vendor. These dependencies can result in incon- sistent and non-deterministic test failures, especially in cloud-based continuous integration environments where tests are executed on different platforms.	[49], [61]
Test Case Timeout	Flakiness caused by tests that specify an upper limit for the test execution duration. Often those tests will fail because the instructions will not complete in time.	[49], [61]

AI for SE

The Rise of Artificial Intelligence in the Software Development Industry

Market revenue in billion of \$

Mining Historical Test Logs to Predict Bugs and Localize Faults in the Test Logs

Anunay Amar and Peter C. Rigby Department of Computer Science and Software Engineering Concordia University Montréal, Canada

Software Defect Prediction via Convolutional Neural Network

Publisher: IEEE	Cite This		👌 PDF
-----------------	-----------	--	-------

Jian Li; Pinjia He; Jieming Zhu; Michael R. Lyu All Authors

Vulnerability Prediction From Source Code Using Machine Learning

ZEKI BILGIN[®], (Member, IEEE), MEHMET AKIF ERSOY, ELIF USTUNDAG SOYKAN, EMRAH TOMUR, PINAR ÇOMAK, AND LEYLI KARAÇAY Ericsson Research, 34367 İstanbul, Turkey

State of the Art

Evolution of the Research Interest on Flakiness

Number of published papers mentioning:

"flaky" AND "tests"

"flaky" AND "tests" AND "predict"

Introduction	Contribution I	Contribution II	Contribution III	Contribution IV	Conclusion

Can we also use AI to fight against flakiness?

Background

Metrics for binary classification models

recision =
$$\frac{TP}{TP + FP}$$

ecall = $\frac{TP}{TP + FN}$
1 = 2 × $\frac{Precision \times Recall}{Precision + Recall}$
ACC = $\frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}} \in [-1, 1]$

Challenges

- Bridge the gap between Academia and Industry
- More realistic validation
- Concrete case studies

- Challenge #2 Comprehension
 - Understand and locate sources of flakiness
 - Better assist developers

Question I:

Can we predict flaky tests?

Question II:

Can we predict the category of a flaky test?

Question III:

Can we locate the source of flakiness?

Question IV:

Are existing prediction techniques suitable to real-world CI?

19

Contribution #1

Motivation

Reruns are costly

Motivation

Released datasets

Static Prediction

- DeFlaker (ICSE 2018)
- iDFlakies (ICST 2019)

Vocabulary-based Approach

Intuition

Idea:

• Relation between certain tokens and flakiness

Advantages:

- Easy to use
- Fast

Representing Test Code

Bag-of-words, n-grams, TF-IDF

 \rightarrow Counting the occurrences of words/tokens

Vocabulary-based Approach

Model overview

Pinto, Gustavo, et al. "What is the vocabulary of flaky tests?" Proceedings of the 17th International Conference on Mining Software Repositories (MSR), 2020

Original study by Pinto (MSR 2020)

Dataset and Results

Dataset: DeFlaker

1,348 flaky tests from 6 Java projects

Algorithm	Precision	Recall	$\mathbf{F1}$	MCC	AUC
Random Forest	0.99	0.91	0.95	0.90	0.98
Decision Tree	0.89	0.88	0.89	0.77	0.91
Naive Bayes	0.93	0.80	0.86	0.74	0.93
Support Vector	0.93	0.92	0.93	0.85	0.93
Nearest Neighbour	0.97	0.88	0.92	0.85	0.93

Pinto, Gustavo, et al. "What is the vocabulary of flaky tests?." Proceedings of the 17th International Conference on Mining Software Repositories. 2020. Bell, Jonathan, et al. "DeFlaker: Automatically Detecting Flaky Tests" *Proceedings of the 40th International Conference on Software Engineering (ICSE)*, 2018

Can we predict flaky tests... in more realistic settings?

Motivation

The importance of intra-project analysis and time-sensitive validation

1. Per project, in time and non-time sensitive settings

Classifier (Random Forest) performance

Project	Earliest revision	latest revision	#FT	#NFT
achilles	2015-10-30	2016-09-05	51	392
hbase	2010-05-17	2010-06-21	98	120
okhttp	2014-03-06	2015-01-30	102	1178
oozie	2013-03-20	2013-05-31	1039	44
oryx	2015-01-06	2015-02-27	38	286
togglz	2016-01-23	2016-06-17	20	256

<u>Intra-projects</u> and <u>time-sensitive</u> analysis give <u>lower performance</u>, but the prediction of flaky tests is still <u>promising</u>

but the prediction of flaky tests is still promising

2. Generalisable to other programming languages

Dataset and Experimental setup

Github Mining

Python projects @flaky annotation

Project	SHA	#FT	#NFT
bokeh	ddc22b8	100	2505
cassandra-dtest	8cb6bd2	72	4221
celery	0833a27	54	2890
jira	7fa3a45	131	59
pipenv	8e64873	32	1612
python-amazon	84c16f5	35	15
python-telegram-bot	8e7c0d6	186	1382
spyder	413c994	173	1086
typed-python	96e7ebd	54	6034

2. Generalisable to other programming languages

Classifier performance for Python projects

Project	Precision	Recall	$\mathbf{F1}$	MCC	AUC
bokeh	1.00	0.91	0.95	0.95	0.95
cassandra-dtest	0.96	0.43	0.58	0.63	0.71
celery	0.85	0.54	0.64	0.66	0.77
jira	0.98	0.99	0.99	0.95	0.98
pipenv	0.78	0.19	0.30	0.37	0.60
python-amazon	0.97	1.00	0.99	0.95	0.96
python-telegram-bot	1.00	0.99	1.00	0.99	1.00
spyder	0.92	0.77	0.83	0.82	0.88
typed-python	1.00	0.86	0.91	0.92	0.93

Vocabulary-based prediction is generalisable to other programming languages

3. Predicting manifest flaky tests?

Experimental setup and results

Project	#reruns	#@flaky	#manifest FT
bokeh	200	100	1
celery	300	54	2
python-telegram-bot	300	186	20

Project	Precision
python-telegram-bot	1.00

Models can help developers mark flaky tests as flaky

Take-away messages

A promissing approach to assit developers

Enough data required to reach good accuracy

Important to validate approaches in realistic settings

Contribution #2

Real case of a flaky test

https://github.com/python-telegram-bot/python-telegram-bot/blob/master/tests/test updater.py def test idle(self, updater, caplog): updater.start polling(0.01) Thread (target=partial(self.signal sender, updater=updater)).start() with caplog.at level (logging.INFO): updater.idle() Concurrency issue? rec = caplog.records[-2]assert rec.getMessage().startswith('Received signal {signal.SIGTERM}') assert rec.levelname == 'INFO' Network call/latency? rec = caplog.records[-1 assert rec.getMessage()_startswith('Scheduler has been shut down') assert rec.levelname == 'INFO' # If we get this far, idle() ran through sleep(0.5) assert updater running is False

Asynchronous wait?

Motivation

Understanding the cause of a given flaky test remains challenging

Too many flaky tests increase the technical debt, devs need to fix it

Can we use static prediction again?

Problem: How to handle the shortage of data?

Data Collection

Dataset

- Luo
- Barbosa
- Habchi
- iFixFlakies

Github mining

Over-sample Data (SMOTE)

Class		Data	L
Class	Original	Short	Augmented
Async waits	125	97	300
Test order dependency	103	100	284
Unordered collections	51	48	146
Concurrency	48	40	124
Time	42	38	110
Network	31	25	/
Randomness	17	14	/
Test case timeout	14	9	/
Resource leak	10	7	/
Platform dependency	2	2	/
Too restrictive range	3	2	/
I/O	2	2	/
Floating point operations	3	1	/
Total	451	385	964

Barbosa, Keila, et al. "Test Flakiness Across Programming Languages" *Transactions on Software Engineering (TSE), 2022*

Habchi, Sarra, et al. "What Made This Test Flake? Pinpointing Classes Responsible for Test Flakiness" *Proceedings of the 38th International Conference on Software Maintenance and Evolution (ICSME)*, 2022 Luo, Qingzhou, et al. "An Empirical Analysis of Flaky Tests" *Proceedings of the 22th Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (FSE), 2014* Shi, August, et al. "Ifixflakies : A framework for automatically fixing order-dependent flaky tests" *Proceedings of the 27th Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (FSE), 2019*

FlakyCat: Siamese networks + Few-Shot Learning

Pros:

- Semantic-aware
- More robust to class imbalance
- Generalize even with few labeled samples

FlakyCat: Siamese networks + Few-Shot Learning

Model Overview

Existing Code Representation Techniques

1. Combinations of Code Representation and Model Type

Model		Smells-based					Vocabul	ary-base	ed		CodeBERT-based				
mouer	Precision	Recall	MCC	F1	AUC	Precision	Recall	MCC	F1	AUC	Precision	Recall	MCC	F1	AUC
SVM	0.11	0.34	0.00	0.17	0.50	0.61	0.52	0.37	$\left \begin{array}{c} 0.45 \end{array} \right $	0.66	0.27	0.43	0.22	0.33	0.60
KNN	0.24	0.37	0.11	0.29	0.55	0.44	0.48	0.31	0.45	0.65	0.56	0.53	0.37	0.51	0.68
DT	0.31	0.33	0.10	0.23	0.53	0.53	0.53	0.39	0.52	0.69	0.49	0.50	0.34	0.49	0.67
\mathbf{RF}	0.32	0.34	0.12	0.24	0.54	0.72	0.61	0.49	0.56	0.72	0.68	0.66	0.55	0.62	0.76
FSL	0.13	0.18	-0.01	0.13	0.50	0.69	0.68	0.58	0.67	0.79	0.74	0.73	0.65	0.73	0.83

FlakyCat

Flaky Categories prediction is possible despite little data available

2. FlakyCat performance per category

Performance varies depending on the categories

Take-away messages

Best performance is achieved using Siamese networks and CodeBERT

FlakyCat can predict flaky categories

Challenges remain to accurately predict some categories

Question I:

Can we predict flaky tests?

Question II:

Can we predict the category of a flaky test?

Question III:

Can we locate the source of flakiness?

Question IV:

Are existing prediction techniques suitable to real-world CI?

Contribution #3

Motivation

Little research on fixing flakiness, often limited to one category

- ODRepair & iFixFlakies: Fix order dependencies
- Flex: Fix randomness

Flakiness sometimes originates from within the program

"Interestingly, not all flaky tests in this category origin in test code: indeed, the developers report that in <u>34% of the cases</u> the fixing process requires the examination of the production code and not of the test. <u>Thus, test flakiness can be originated by the production code</u>"

"<u>Some fixes to flaky tests (24%) modify the CUT</u>, and most of these cases (94%) fix a bug in the CUT."

Help devs to locate flakiness when it originates from the program

Luo, Qingzhou, et al. "An Empirical Analysis of Flaky Tests" Proceedings of the 22th Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (FSE), 2014

Eck, Moritz, et al. "Understanding Flaky Tests: The Developer's Perspective" Proceedings of the 27th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (FSE), 2019

Comprehension

Can we use Fault Localisation techniques to find flaky components?

Fault localisation

- To find bugs/faults
- Most effective technique
- ♦ Spectrum-Based Fault Localisation (SBFL)
 → Relies on test coverage and test outcome

Background

<u>Regular</u> Spectrum-Based Fault Localisation

Goal: Finding faulty components based on coverage information

Line	Program	Te	sts	Susp score
LINE	Program	t1	t2	Susp. score
1	<pre>int maximum(int a, int b) {</pre>			0.5
2	if $(a > b)$ {	•		0.5
3	return b; //Fix: return a;			1
4	}			1
5	else {		•	0
6	return b;		-	0
7	}		-	0
8	}	×	~	

<u>Output:</u>

Ranked list of elements to inspect.

- 1st stmt: most suspicious

- Last stmt: least suspicious

Our approach

Spectrum-Based Flakiness Localisation

Name	Formula
Ochiai [42]	$\frac{e_f}{\sqrt{(e_f + n_f)(e_f + e_s)}}$
Barinel [43]	$1 - \frac{e_s}{\substack{e_s + e_f \\ e_f}}$
Tarantula [44], [45]	$\frac{\frac{J}{e_f + n_f}}{\frac{e_f}{e_f + n_f} + \frac{e_s}{e_s + n_s}}$
DStar [34]	$\frac{e_f^*}{e_f^*}$

- Instead of Failing tests and Passing tests
 Using Flaky tests and Stable tests
- Focus on ranking classes

Data Collection

Approach

Looking for flakiness-fixing commits: flaky tests with corresponding "flaky" class

- 1. Search: Look for commits in large Java projects containing flaky keyword
- 2. Inspect: Limit to atomic commits fixing CUT (fix, repair, patch keywords)
- 3. Coverage: Build, run the test suite and get the <u>coverage matrix</u> for all tests

4. Extract: Flaky test, "flaky" class, coverages information, cause of flakiness

Data Collection

Dataset

TABLE I: Collected Data. *ffc:* number of flakiness-fixing commits. *all:* number of commits in the project.

#Commits		#Tests		#Classes			
ffc	all	min - max	avg	min – max	avg		
8	18,990	138 - 2,089	1,113	734 – 1366	1053.4		
14	27,903	15 - 1,018	174	72 – 1767	1262.3		
10	8,516	194 - 1,326	626	171 – 422	259.7		
3	32,560	315 - 694	473	131 – 817	360.3		
3	71,824	21 - 5,782	2,139	40 - 1663	581.3		
38		15 - 5,782	905	40 – 1767	820.2		
	#Co ffc 8 14 10 3 3 38	#Commitsffcall818,9901427,903108,516332,560371,824	#Commits #Tests ffc all min - max 8 18,990 138 - 2,089 14 27,903 15 - 1,018 10 8,516 194 - 1,326 3 32,560 315 - 694 3 71,824 21 - 5,782 38 15 - 5,782	#Commits#Testsffcallmin - maxavg818,990138 - 2,0891,1131427,90315 - 1,018174108,516194 - 1,326626332,560315 - 694473371,82421 - 5,7822,1393815 - 5,782905	#Commits#Tests#Classffcallmin - maxavgmin - max818,990138 - 2,0891,113 $734 - 1366$ 1427,90315 - 1,018174 $72 - 1767$ 108,516194 - 1,326626 $171 - 422$ 332,560315 - 694473131 - 817371,82421 - 5,7822,13940 - 16633815 - 5,78290540 - 1767		

Evaluation Metrics

Accuracy: Number of flaky classes ranked in the top n

Wasted Effort: Number of classes inspected before reaching the flaky class

Relative effort : Effort wrt the number of covered classes [0, 100]

Can we use SBFL to identify flaky classes?

Project	Total		a	wef (\mathbf{R}_{wef})				
		@1	@3	@5	@10	mean	med	
Hbase	8	1	4	5	5	13.12 (16)	2.5 (5)	
Ignite	14	0	3	3	5	214.93 (21)	20.0 (4)	
Pulsar	10	3	5	6	9	9.20 (23)	3.0 (9)	
Alluxio	3	0	0	0	1	101.67 (65)	86.0 (83)	
Neo4j	3	1	2	2	2	23.33 (43)	1.0 (18)	
Total	38	5	14	16	22	94.24 (26)	6.5 (8)	
Percentage (%)	100	13	37	42	58	-	-	

Can we improve the initial performance?

Considering other metrics

Flakiness metrics

Change metrics

Size metrics

TABLE III: Code and change metrics used to augment SBFL.

	Metric	Definition
	#TOPS	Number of time operations performed by the class.
	#ROPS	Number of calls to the random() method in the class.
ess	#IOPS	Number of input/output operations performed by the class.
Flakin	#UOPS	Number of operations performed on unordered col- lections by the class.
	#AOPS	Number of asynchronous waits in the class.
	#COPS	Number of concurrent calls in the class.
	#NOPS	Number of network calls in the class.
ge	Changes	Number of unique changes made on the class.
lang	Age	Time interval to the last changes made on the class.
G	Developers	Number of developers contributing to the class.
	LOC	The number of lines of code.
Size	CC	Cyclomatic complexity.
•1	DOI	Depth of inheritance.

13

37

42

58

Can we improve this initial performance?

TABLE VI: RQ2: The contribution of flakiness, change, and size metrics to the identification of flaky classes.

	8		SB	FL & fla	akiness				SB	BFL & c	hange				5	SBFL &	size	
Proj. (#)		а	icc		wef (R _a	wef)		а	icc		wef (R	wef)		а	acc		wef (R	wef)
	@1	@3	@5	@10	mean	med	@1	@3	@5	@10	mean	med	@1	@3	@5	@10	mean	med
Hbase (8)	1	4	5	5	11.9 (12)	3 (4)	2	4	4	5	16.9 (13)	4 (4)	2	4	5	5	11.4 (12)	3 (3)
Ignite (14)	0	2	2	4	230.9 (26)	63 (4)	2	4	4	4	222.3 (24)	18 (4)	1	3	3	5	220.1 (24)	43 (4)
Pulsar (10)	2	5	6	8	10.2 (15)	3 (8)	3	5	7	9	8.0 (12)	2 (5)	2	5	7	9	6.9 (13)	2 (6)
Alluxio (3)	0	0	1	1	97.7 (51)	73 (65)	0	0	1	1	75.7 (49)	94 (39)	0	0	1	1	90.7 (49)	77 (58)
Neo4j (3)	1	2	2	2	19.3 (42)	1 (18)	2	2	2	2	6.7 (37)	0 (9)	2	2	2	2	23.0 (40)	0 (10)
Total (38)	4	13	16	20	99.5 (24)	8 (8)	9	15	18	21	94.1 (21)	5 (6)	7	14	18	22	94.3 (22)	5 (7)
Percentage (%)	11	34	42	53	-	-	24	39	47	55	-	1 22	18	37	47	58	-	-
				T														

²² Initial performance

Change and Size metrics have <u>positive</u> impacts

SBFL + Change + Size metrics

Project	Total		a	cc		wef (\mathbf{R}_{wef})		
		@1	@3	@5	@10	mean	med	
Hbase	8	3	5	6	6	9.62 (12)	1.5 (2)	
Ignite	14	2	4	4	4	228.61 (24)	17.5 (4)	
Pulsar	10	3	6	7	9	7.30 (12)	2.0 (5)	
Alluxio	3	1	1	1	2	61.83 (22)	9.0 (10)	
Neo4j	3	1	2	2	2	19.67 (42)	1.0 (18)	
Total	38	10	18	20	23	94.61 (19)	3.5 (5)	
Perc (%)	100	26	47	53	61	-	-	

Almost 50% of classes responsible for flakiness are ranked in the top 3

We can leverage SBFL to find components in the code causing flakiness

Together, SBFL, change and size metrics give the best results

We need to further help developers

Question I:

Can we predict flaky tests?

Question II:

Can we predict the category of a flaky test?

Question III:

Can we locate the source of flakiness?

Question IV:

Are existing prediction techniques suitable to real-world CI?

Contribution #4

Motivation

Current Research on Flakiness Prediction

Study	Model	Feature category	Features	Benchmark	Target	Year
King et al. [91]	Bayesian network	Static & dynamic	Code metrics	Industrial	Flaky tests	2018
Pinto et al. [92]	Random forest	Static	Vocabulary	DeFlaker	Flaky tests	2020
Bertolino et al. [93]	KNN	Static	Vocabulary	DeFlaker	Flaky tests	2020
Haben et al. [94]	Random forest	Static	Vocabulary	DeFlaker	Flaky tests	2021
Camara et al. [95]	Random forest	Static	Vocabulary	iDFlakies	Flaky tests	2021
Alshammari et al. [96]	Random forest	Static & dynamic	Code metrics & Smells	FlakeFlagger	Flaky tests	2021
Fatima et al. [97]	Neural Network	Static	$\operatorname{CodeBERT}$	FlakeFlagger iDFlakies	Flaky tests	2021
Pontillo et al. [98]	Logistic regression	Static	Code metrics & Smells	iDFlakies	Flaky tests	2021
Lampel et al. $[99]$	XGBoost	Static & dynamic	Job execution metrics	Industrial	Flaky failures	2021
Qin et al. [100]	Neural Network	Static	Dependency graph	Industrial	Flaky tests	2022
Olewicki et al. [101]	XGBoost	Static	Vocabulary	Industrial	Flaky builds	2022
Ackli et al. [102]	Siamese Networks	Static	CodeBERT	Various	Flaky tests	2022

Most of the previous research focuses on predicting <u>flaky tests</u> using <u>vocabulary</u> features

Case study: Chromium

Large project with its own custom CI Framework:

~80 million LOC

Built for hundreds of OS and versions

Definitions

Builds

Either:

~200,000 tests (unit, integration, GUI)

1 build: specific revision

Conclusion

Data collection

Dataset

D 4	Nh of Duilde	Period of	1	Number	of Tests	Number of Failures		
lester	ND OF Builds	From	То	Passing	Flaky	Fault-revealing	Flaky	Fault-triggering
Linux Tests	10,000	Mar 2, 2022	Dec 1, 2022	198,273	23,374	2,343	1,833,831	17,171

Number of flaky and fault-revealing test per builds

Facts, Intuition and Questions

- Fault-revealing tests are blocking, and require investigations
- Costs come from reruns. Reruns occur when there is (at least) one test failure
- Flaky tests are failing because of <u>contextual conditions</u> present during one of their <u>executions</u>

Retrieved features

Feature Name	Feature Description			
buildId	The build number associated with the test execution			
flakeRate	The flake rate of the test over the las			
runDuration	The time spent for this test execution			
runStatus	ABORT FAIL PASS CRASH SKIP			
runTagStatus	CRASH PASS FAIL TIMEOUT SUCCESS FAILURE FAILURE_ON_EXIT NOTRUN SKIP UNKNOWN			
testSource	The test source code			
testSuite	The test suite the test belongs to			
testId	The test name			

The flake rate is often used in the industry to quantify the level of flakiness of a test

Experimental settings

Model training

Random Forest Classifier

Training set Test set Build timeline b_0 $b_{8,000}$ $b_{10,000}$

Time-sensitive analysis

1. Performance of existing approaches

¾ of fault-triggering failures are classified as flaky (missed faults)

Tauits)

Across builds

1/3 of fault-revealing tests were found to be flaky in previous builds

builds

2. Focusing on failures

Execution features	Precision	Recall	MCC	FPR
No	99.7%	91.3%	0.25	20.3%
Yes	99.5%	98.7%	0.42	42.3%

Training on failures and adding execution features improves the performance

reatures improves the periormance

Approaches should focus on failures

A large part of flaky tests are valuable as they can reveal faults

Dynamic/contextual features can help

Additional work is needed to effectively distinguish flaky from non-flaky failures

Tallures

Conclusion

Contribution III

Question I:

Can we predict flaky tests?

- Promising
- Data needed
- Realistic validation

Question II:

Can we predict the category of a flaky test?

- Promising despite little data
- Categories support

Question III:

Can we locate the source of flakiness?

Question IV:

Are existing prediction techniques suitable to real-world CI?

- Difficult problem
- Focus on failures
- Consider dyn. features

- FL for flakiness loc.
- Finer granularity?

- Time-Sensitive Validation
- Intra-Project Analysis
- Chromium Case Study

- Category Prediction
- Flakiness Location

Challenge #1 Adoption

Contribution I:

A Replication Study on the Usage of Code Vocabulary to Predict Flaky Tests, **MSR** 2021

Contribution IV:

The Importance of Discerning Flaky from Fault-triggering Test Failures: A Case Study on the Chromium CI, **under submission**

Contribution II:

FlakyCat: Predicting Flaky Tests Categories using Few-Shot Learning, **AST** 2023

Contribution III:

What Made This Test Flake? Pinpointing Classes Responsible for Test Flakiness, **ICSME** 2022

Conclusion

Future work

- Continuity of these contributions:
- More accurate prediction and location, other features to consider
 - Machine Learning Interpretability

Practitioners studies

List of publications

S. Habchi, G. Haben, M. Papadakis, M. Cordy, Y. Le Traon, A qualitative study on the sources, impacts, and mitigation strategies of flaky tests, ICST 2022

G. Haben, S. Habchi, M. Papadakis, M. Cordy, Y. Le Traon, A Replication Study on the Usability of Code Vocabulary in Predicting Flaky Tests, MSR 2021

A. Akli, G. Haben, S. Habchi, Predicting flaky tests categories using few-shot learning, AST 2023

S. Habchi, G. Haben, J. Sohn, A. Franci, M. Cordy, M. Papadakis, Y. Le Traon, What made this test flake? Pinpointing classes responsible for test flakiness, ICSME 2022

G. Haben, S. Habchi, M. Papadakis, M. Cordy, Y. Le Traon, *The Importance of Discerning Flaky from Fault-triggering Test Failures: A Case Study on the Chromium CI*, ArXiv

Enabling Open Science

Replication packages

- <u>https://figshare.com/s/5b252c442fc36e8823cb</u>
- <u>https://github.com/serval-uni-lu/FlakyVocabularyReplication</u>
- <u>https://github.com/serval-uni-lu/FlakyCat</u>
- <u>https://github.com/serval-uni-lu/sherlock.replication</u>
- <u>https://github.com/serval-uni-lu/DiscerningFlakyFailures</u>

Datasets

FlakyCat, 451 flaky tests + categories https://github.com/serval-uni-lu/FlakyCat/tree/main/data

Chromium, builds + failures information https://figshare.com/articles/dataset/dataset/22354141

Test Flakiness Prediction Techniques for Evolving Software Systems

<u>Presented by:</u> Guillaume HABEN, University of Luxembourg, Luxembourg

Defense committee: Prof. Dr. Mike Papadakis, Dr. Maxime Cordy, Prof. Dr. Yves Le Traon, Prof. Dr. Arie Van Deursen, Prof. Dr. Javier Tuya,

<u>Date:</u> June 29th, 2023 Chairman, Vice-chairman, Supervisor, Member & Reviewer, Member & Reviewer, University of Luxembourg, Luxembourg University of Luxembourg, Luxembourg University of Luxembourg, Luxembourg TU Delft, The Netherlands Universidad de Oviedo, Spain

1. Per project, in time and non-time sensitive settings Classifier (Random Forest) performance

2. FlakyCat performance per category

Example of a test misclassified as Async wait

	erest
!	<pre>public void shouldPickANewServer[]() throws</pre>
	Throwable {
3	[]
4	Thread thread = new Thread(() -> {
5	try {
6	<pre>startTheLeaderSwitching.await();</pre>
7	CoreClusterMember theLeader = cluster.
8	awaitLeader();
9	<pre>switchLeader(theLeader);</pre>
D	<pre>} catch (TimeoutException </pre>
	InterruptedException e) {
1	// ignore
2	<pre>});</pre>
3	[]
4	}

Commit message:

"A latch was being release before ensuring that the condition it was guarding for was fulfilled. <u>This created a race that most</u> of the time was <u>won by the desired thread, but it was flaky</u>."

Contribution III

2. FlakyCat performance per category

Interpretation

Example of a test misclassified as Async wait

	@Test
2	<pre>public void shouldPickANewServer[]() throws</pre>
	Throwable {
3	[]
4	Thread thread = new Thread(() -> {
5	try {
6	<pre>startTheLeaderSwitching.await();</pre>
7	CoreClusterMember theLeader = cluster.
8	awaitLeader();
9	switchLeader(theLeader);
0	<pre>} catch (TimeoutException </pre>
	InterruptedException e) {
1	// ignore
2	<pre>});</pre>
3	[]
4	}

Commit message:

"A latch was being release before ensuring that the condition it was guarding for was fulfilled. <u>This created a race that most</u> of the time was <u>won by the desired thread, but it was flaky</u>."

Performance varies depending on the categories

2. FlakyCat Metrics

Then 3 possibilities:

Micro-averaged: all samples equally contribute to the final averaged metric

Macro-averaged: all classes equally contribute to the final averaged metric

Weighted-averaged: each classes's contribution to the average is weighted by its size (1vsAll)

2. FlakyCat Validation

10-fold Cross validation on the training set (75% of data)

Check performance on hold-out set (25% of data)

Unseen data in hold-out set (no leakage of oversampled elements

Introduction	Contribution I	Contribution II	Contribution III	Contribution IV	Conclusion	
	•		RESEARCH-ARTICLE		Ƴin o∳f ≌	
2. FlakyCat			On the use of test smells for prediction of flaky tests			
			Authors: Bruno Camara, 👰 Marco Silva, 😩	Andre Endo, Silvia Vergilio Authors Info & C	Claims	
Test sme	lls prediction		SAST '21: Proceedings of the 6th Brazilian Symposium on Systematic and Automated Software Testing • September 2021 • Pages 46–54 • https://doi.org/10.1145/3482909.3482916			
Journals & Magazines > IEEE Transactions	on Software > Volume: 49 Issue: 4		Published: 12 October 2021 Publication History	(R) Check for updates		
Flakify: A Black-Box, Language Model-Based Predictor for Flaky Tests Publisher: IEEE Cite This PDF Sakina Fatima (); Taher A. Ghaleb (); Lionel Briand () All Authors			RESEARCH-ARTICLE	iction: How Far Can We	Ƴin oổ f≌ Go?	
			Authors: 🙁 Valeria Pontillo, 😍 Fabio Palomba,	Filomena Ferrucci Authors Info & Claims		
Conferences > 2021 IEEE/ACM 43rd Internatio			Empirical Software Engineering, Volume 27, Issue 7 • Dec 2022 • https://doi.org/10.1007/s10664-022-10227-1			
FlakeFlagger: Pre Publisher: IEEE Cite This	edicting Flakiness With	out Rerunning Tests	Published: 01 December 2022 Publication History			
Abdulrahman Alshammari; Chri	stopher Morris ; Michael Hilton ; Jonathan I	Bell All Authors	RESEARCH-ARTICLE		Ƴ in 🕹 f 🗳	
		Toward static test flakiness prediction: a feasibility study				
			Authors: 🙁 Valeria Pontillo, 🙁 Fabio Palomba, 🦉	Filomena Ferrucci Authors Info & Claims		
			MaLTESQuE 2021: Proceedings of the 5th Internationa Evolution • August 2021 • Pages 19–24 • https://doi.c	al Workshop on Machine Learning Techniques for a borg/10.1145/3472674.3473981	Software Quality	

Check for updates

Contribution III

Conclusion

Genetic Programming

Global formula

TABLE VIII: RQ3: The effectiveness of the voting between 60 different GP-evolved models, 30 from SBFL with change metrics, and 30 from using SBFL with size metrics. 'Perc' denotes Percentage

Project	Total	acc			wef (\mathbf{R}_{wef})		
		@1	@3	@5	@10	mean	med
Hbase	8	3	5	6	6	9.62 (12)	1.5 (2)
Ignite	14	2	4	4	4	228.61 (24)	17.5 (4)
Pulsar	10	3	6	7	9	7.30 (12)	2.0 (5)
Alluxio	3	1	1	1	2	61.83 (22)	9.0 (10)
Neo4j	3	1	2	2	2	19.67 (42)	1.0 (18)
Total	38	10	18	20	23	94.61 (19)	3.5 (5)
Perc (%)	100	26	47	53	61	-	-

~50% flaky classes identified in the top 3

Chromium

Table 8.5: Number of builds containing each studied test type. All builds contain flaky tests. 1/4 contain fault-revealing tests. Among the failing builds, 3/4 contain only fault-revealing tests that are flaky in other builds.

Builds containing	Number
Flaky tests	10,000
Fault-revealing tests	2,415
Fault-revealing flaky tests	1,974
Exclusively fault-revealing flaky tests	1,766

Chromium

Figure 8.4: The data collected from Chromium's CI consists of flaky, fault-revealing and passing tests spread across 10,000 builds. The build timeline ranges from build b_0 to $b_{10,000}$ and depicts the distribution of the collected tests: flaky tests are spread across all builds and fault-revealing tests happen occasionally. Due to a large number of passing tests, we collected them from the $b_{8,000}$ build (*i.e.* at the end of our training set).

Conclusion

Introduction	Contribution I	Contribution II	Contribution III	Contribution IV	Conclusion
			TEST :		
	TEST	TEST	TEST		

