
Test Flakiness Prediction Techniques 
for Evolving Software Systems

Defense committee:
Prof. Dr. Mike Papadakis,
Dr. Maxime Cordy,
Prof. Dr. Yves Le Traon,
Prof. Dr. Arie Van Deursen,
Prof. Dr. Javier Tuya,

Chairman, 
Vice-chairman, 
Supervisor, 
Member & 
Reviewer, 
Member & 
Reviewer, 

University of Luxembourg, Luxembourg
University of Luxembourg, Luxembourg
University of Luxembourg, Luxembourg
TU Delft, The Netherlands
Universidad de Oviedo, Spain

Date:
June 29th, 2023

Presented by:
Guillaume HABEN, University of Luxembourg, Luxembourg



2

Jim

Introduction Contribution I Contribution II Contribution III Contribution IV Conclusion



3

Introduction Contribution I Contribution II Contribution III Contribution IV Conclusion

Software Testing

Benefits:

• More reliable

• More secure

• More performant

• Save money

• Customer satisfaction

Identifying issues and defects before software is released
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>10k software engineers

>100m lines of code projects

>1 000 commits per hour
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Challenges
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Testing Large Software Systems
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Handle Large Amounts of Tests Ensure Test Quality Manage Multi-Environments

Test Coverage

Avoid Anti-Patterns

Test Robustness

Hundreds of thousands of tests

Regression Test Selection

Test Case Prioritization Test Refactoring

Distributed Testing

Platform Dependencies

Dev, Test, Prod



Definition
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“A flaky test is a test that 

can both pass or fail when executed several times 

on the same version of a program”
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Consequences for developers
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Gives confusing signals

Real bug? False alert?



Investigations
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Habchi, Sarra, et al. ”A Qualitative Study on the Sources, Impacts and Mitigation Strategies of Flaky Tests" Proceedings of the 15th International Conference 
on Software Testing, Verification and Validation (ICST), 2022

 

 

 

 

Introduction Contribution I Contribution II Contribution III Contribution IV Conclusion

Dealing with flakiness:



Why does it matter?

10Micco, John and Memon, Atif ”GTAC 2016: How flaky tests in continuous integration”, https://www.youtube.com/watch?v=CrzpkF1-VsA, 2016
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Major problem in software testing

Flaky tests often accounts for 1-5%

Flakiness increases costs both time-wise and computer-wise

�At Google: up to 16% of testing budget spent just to rerun flaky tests

Flakiness reduces productivity (delay builds) and trust

This leads to bad quality

https://www.youtube.com/watch?v=CrzpkF1-VsA


Concrete example of a flaky test
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# https://github.com/python-telegram-bot/python-telegram-bot/blob/master/tests/test_updater.py
def test_idle(self, updater, caplog):
       updater.start_polling( 0.01)
       Thread(target=partial(self.signal_sender, updater=updater)).start()
       with caplog.at_level(logging.INFO):
           updater.idle()
       rec = caplog.records[ -2]
       assert rec.getMessage().startswith( 'Received signal {signal.SIGTERM}')
       assert rec.levelname == 'INFO'
       rec = caplog.records[ -1]
       assert rec.getMessage().startswith( 'Scheduler has been shut down' )
       assert rec.levelname == 'INFO'
       # If we get this far, idle() ran through
       sleep(0.5)
       assert updater.running is False
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Root cause
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Categories of flakiness
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State of the Art
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Focus of Academic Research on Flakiness

Empirical Studies

Prevalence Causes

Industrial

Surveys

Open 
Source

Detection

DeFlaker

iDFlakies

Shaker

Prediction

Fixing

iFixFlakies
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AI for SE
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The Rise of Artificial Intelligence in the Software Development Industry

Market revenue in billion of $

https://www.statista.com/statistics/607716/worldwide-artificial-intelligence-market-revenues/



State of the Art
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Evolution of the Research Interest on Flakiness
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Number of published papers mentioning:

“flaky” AND “tests” “flaky” AND “tests” AND “predict”

https://www.scopus.com/



Can we also use AI to fight against flakiness?
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Background
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Metrics for binary classification models

 

 

 

 

Predicted

Negative Positive

A
c
t
u
a
l

Negative TN FP

Positive FN TP



Challenges
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Challenge #2
Comprehension

• Bridge the gap between 
Academia and Industry

• More realistic validation

• Concrete case studies

• Understand and locate sources of 
flakiness

• Better assist developers

Challenge #1
Adoption
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Question I:
Can we predict flaky tests?

Question II:
Can we predict the category of a
flaky test?

Question III:
Can we locate the source of flakiness?

Question IV:
Are existing prediction 
techniques suitable to 

real-world CI?



Contribution #1
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Motivation
Reruns are costly

21
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Motivation

Static Prediction

22

Released datasets

• DeFlaker (ICSE 2018)

• iDFlakies (ICST 2019)
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Vocabulary-based Approach

23

Intuition
Example

@test
exampleTest(param A) {
   some.instruction();
   some.other(instruction);
   assert(correct);
}

some 2

instruction 2

other 1

assert 1

correct 1

Representing Test Code

      Bag-of-words, n-grams, TF-IDF

 

Idea:
• Relation between certain tokens and flakiness

Advantages:
• Easy to use
• Fast
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Vocabulary-based Approach

24

Pinto, Gustavo, et al. "What is the vocabulary of flaky tests?" Proceedings of the 17th International Conference on Mining Software Repositories (MSR), 2020

Bag of words
Dataset

• Flaky

• Non-Flaky

Classifies as

Model overview

some 2

instruction 2

other 1

assert 1

correct 1
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Original study by Pinto (MSR 2020)
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Dataset: DeFlaker
1,348 flaky tests from 6 Java projects

Bell, Jonathan, et al. ”DeFlaker: Automatically Detecting Flaky Tests" Proceedings of the 40th International Conference on Software Engineering (ICSE), 2018
Pinto, Gustavo, et al. "What is the vocabulary of flaky tests?." Proceedings of the 17th International Conference on Mining Software Repositories. 2020.

Dataset and Results
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Can we predict flaky tests…
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Adoption

in more realistic settings? 



Motivation
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The importance of intra-project analysis and time-sensitive validation

inter-project

Original work

intra-project

This work

time-sensitivity

This work

No time-sensitivity

Original work
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Classifier (Random Forest) performance

1. Per project, in time and non-time sensitive settings

Intra-projects and time-sensitive analysis give lower performance,
but the prediction of flaky tests is still promising 
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Dataset and Experimental setup

Github Mining

         Python projects
         @flaky annotation

2. Generalisable to other programming languages
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2. Generalisable to other programming languages
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Classifier performance for Python projects

Vocabulary-based prediction is generalisable to other programming 
languages
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Experimental setup and results

3. Predicting manifest flaky tests?

Models can help developers mark flaky tests as flaky
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Important to validate approaches in realistic settings

A promissing approach to assit developers

Take-away messages

Enough data required to reach good accuracy
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Question I:
Can we predict flaky tests?

Question II:
Can we predict the category of a
flaky test?

Question III:
Can we locate the source of flakiness?

Question IV:
Are existing prediction 
techniques suitable to 

real-world CI?
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Contribution #2



Real case of a flaky test
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# https://github.com/python-telegram-bot/python-telegram-bot/blob/master/tests/test_updater.py
def test_idle(self, updater, caplog):
       updater.start_polling( 0.01)
       Thread(target=partial(self.signal_sender, updater=updater)).start()
       with caplog.at_level(logging.INFO):
           updater.idle()
       rec = caplog.records[ -2]
       assert rec.getMessage().startswith( 'Received signal {signal.SIGTERM}')
       assert rec.levelname == 'INFO'
       rec = caplog.records[ -1]
       assert rec.getMessage().startswith( 'Scheduler has been shut down' )
       assert rec.levelname == 'INFO'
       # If we get this far, idle() ran through
       sleep(0.5)
       assert updater.running is False

Concurrency issue?

Asynchronous wait?
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Network call/latency?



Motivation
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Understanding the cause of a given flaky test remains 
challenging

Can we use static prediction again?

Problem: How to handle the shortage of data?
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Too many flaky tests increase the technical debt, devs need 
to fix it



Data Collection
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Dataset

Existing datasets
• Luo
• Barbosa
• Habchi
• iFixFlakies

Github mining

Over-sample Data (SMOTE) 

Habchi, Sarra, et al. ”What Made This Test Flake? Pinpointing Classes Responsible for Test Flakiness" Proceedings of the 38th International Conference on Software Maintenance and Evolution (ICSME), 2022

Luo, Qingzhou, et al. ”An Empirical Analysis of Flaky Tests" Proceedings of the 22th Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (FSE), 2014

Barbosa, Keila, et al. ”Test Flakiness Across Programming Languages" Transactions on Software Engineering (TSE), 2022

Shi, August, et al. ”Ifixflakies : A framework for automatically fixing order-dependent flaky tests" Proceedings of the 27th Joint European Software Engineering Conference and Symposium 
on the Foundations of Software Engineering (FSE), 2019
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FlakyCat: Siamese networks + Few-Shot Learning
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Intuition

Pros:
• Semantic-aware

• More robust to class imbalance

• Generalize even with few labeled samples 
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FlakyCat: Siamese networks + Few-Shot Learning

39

Similarity

Identical sub-networks

Category
• Async wait
• Concurrency
• Unordered Collection
• Test Order Dependency
• Time

Few-shot Learning
Classifier

Model Overview

Principal Component Analysis
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Test smells

Examples:
- Assertion roulette
- Eager test
- Resource optimist
- …

@test
exampleTest(param A) {
   some.instruction();
   wait.finish();
   assert(correct);
}

Sleepy test

Existing Code Representation Techniques 

40

Vocabulary

@test
exampleTest(param A) {
   some.instruction();
   some.other(instruction);
   assert(correct);
}

some 2

instruction 2

other 1

assert 1

correct 1

CodeBERT

Large Language Models

Pre-trained on 6 Programming Languages

Vector 
representation
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1. Combinations of Code Representation and Model Type

Flaky Categories prediction is possible despite little data available

Introduction Contribution I Contribution II Contribution III Contribution IV Conclusion

FlakyCat
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2. FlakyCat performance per category

Performance varies depending on the categories

Introduction Contribution I Contribution II Contribution III Contribution IV Conclusion
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Take-away messages

Best performance is achieved using Siamese networks and CodeBERT

FlakyCat can predict flaky categories

Challenges remain to accurately predict some categories
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Question I:
Can we predict flaky tests?

Question II:
Can we predict the category of a
flaky test?

Question III:
Can we locate the source of flakiness?

Question IV:
Are existing prediction 
techniques suitable to 

real-world CI?

Introduction Contribution I Contribution II Contribution III Contribution IV Conclusion
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Contribution #3



Motivation
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Flakiness sometimes originates from within the 
program
“Interestingly, not all flaky tests in this category origin in test 
code: indeed, the developers report that in 34% of the cases 
the fixing process requires the examination of the production 
code and not of the test. Thus, test flakiness can be originated 
by the production code”

“Some fixes to flaky tests (24%) modify the CUT, and most of 
these cases (94%) fix a bug in the CUT.”

Luo, Qingzhou, et al. ”An Empirical Analysis of Flaky Tests" Proceedings of the 22th Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (FSE), 2014

Eck, Moritz, et al. ”Understanding Flaky Tests: The Developer’s Perspective" Proceedings of the 27th ACM Joint European Software Engineering Conference and Symposium on the 
Foundations of Software Engineering (FSE), 2019

Little research on fixing flakiness, often limited 
to one category

• ODRepair & iFixFlakies: Fix order dependencies

• Flex: Fix randomness

Help devs to locate flakiness when it originates from the program
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Can we use Fault Localisation techniques 

to find flaky components?

47

Comprehension



Fault localisation
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❖ To find bugs/faults

❖ Most effective technique

❖ Spectrum-Based Fault Localisation (SBFL) 
 → Relies on test coverage and test outcome
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Background
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Regular Spectrum-Based Fault Localisation

Goal: Finding faulty components based on coverage information

SBFL 
Example

Output:
Ranked list of elements to inspect. 

- 1st stmt: most suspicious
- Last stmt: least suspicious
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Our approach

50

❖ Instead of Failing tests and Passing tests
     Using Flaky tests and Stable tests

❖ Focus on ranking classes

Spectrum-Based Flakiness Localisation
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Data Collection
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R
w
e
f

Looking for flakiness-fixing commits: flaky tests with corresponding “flaky” class

1. Search: Look for commits in large Java projects containing flaky keyword

2. Inspect: Limit to atomic commits fixing CUT (fix, repair, patch keywords)

3. Coverage: Build, run the test suite and get the coverage matrix for all tests

4. Extract: Flaky test, “flaky” class, coverages information, cause of flakiness

Approach
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Data Collection
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R
w
e
f

Dataset

Introduction Contribution I Contribution II Contribution III Contribution IV Conclusion



Evaluation Metrics
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R
w
e
f

acc@n Accuracy: Number of flaky classes ranked in the top n

wef Wasted Effort: Number of classes inspected before reaching the flaky class

Rwef Relative effort : Effort wrt the number of covered classes [0, 100]

Introduction Contribution I Contribution II Contribution III Contribution IV Conclusion



Can we use SBFL to identify flaky classes?
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Can we improve the initial performance?
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Considering other metrics

Flakiness metrics

Change metrics

Size metrics
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Can we improve this initial performance?
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Initial performance

Change and Size metrics have positive impacts
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SBFL + Change + Size metrics
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Almost 50% of classes responsible for flakiness are ranked in the top 3
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We need to further help developers

We can leverage SBFL to find components in the code causing flakiness

Together, SBFL, change and size metrics give the best results

Take-away messages
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Question I:
Can we predict flaky tests?

Question II:
Can we predict the category of a
flaky test?

Question III:
Can we locate the source of flakiness?

Question IV:
Are existing prediction 
techniques suitable to 

real-world CI?

Introduction Contribution I Contribution II Contribution III Contribution IV Conclusion
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Contribution #4



Motivation
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Current Research on Flakiness Prediction

Most of the previous research focuses on predicting flaky tests using vocabulary features 
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Case study: Chromium
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Large project with its own custom CI Framework: 

~80 million LOC

Built for hundreds of OS and versions
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Definitions
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Builds

1 build: specific revision

Either:

Builder: Compiles the project
- Specific version, instrumentations, OS

Tester: Runs regression tests
 ~200,000 tests (unit, integration, GUI)
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Definitions
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Tests and Failures

Fault-revealing test

Flaky failure

Fault-triggering failure

Execution within 
a build

Flaky test

Identified as

Failure
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Identifying flaky tests

65
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FAULT-REV
EALING



Data collection
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Dataset
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Number of flaky and fault-revealing test per builds



Facts, Intuition and Questions
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• Fault-revealing tests are blocking, and require investigations

• Costs come from reruns. Reruns occur when there is (at least) one test failure

• Flaky tests are failing because of contextual conditions present during one of their 

executions

Can we predict failures as flaky or fault-triggering? 
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Retrieved features
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The flake rate is often used in the industry 
to quantify the level of flakiness of a test
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Experimental settings
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Model training

Random Forest Classifier
Time-sensitive analysis
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1. Performance of existing approaches

TRAIN SET

80%

TEST SET

20%

Ti
m

el
in

e 
/ 

b
u

ild
s

¾ of fault-triggering failures are classified as flaky (missed 
faults)
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Across builds
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⅓ of fault-revealing tests were found to be flaky in previous 
builds



2. Focusing on failures
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TRAIN SET

80%

TEST SET

20%

Ti
m

el
in

e 
/ 

b
u

ild
s

Training on failures and adding execution 
features improves the performance
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Approaches should focus on failures

A large part of flaky tests are valuable as they can reveal faults

Dynamic/contextual features can help 

Additional work is needed to effectively distinguish flaky from non-flaky 
failures

Take-away messages
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Conclusion



75

Question I:
Can we predict flaky tests?

• Promising
• Data needed
• Realistic validation

Question II:
Can we predict the category of a flaky test?

• Promising despite little data
• Categories support

Question III:
Can we locate the source of flakiness?

• FL for flakiness loc.
• Finer granularity?

Question IV:
Are existing prediction techniques suitable to 

real-world CI?

• Difficult problem
• Focus on failures
• Consider dyn. features
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Challenges
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Challenge #2
Comprehension

Challenge #1
Adoption

Introduction Contribution I Contribution II Contribution III Contribution IV Conclusion

• Time-Sensitive Validation
• Intra-Project Analysis

• Chromium Case Study

• Category Prediction
• Flakiness Location 



Contributions
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Challenge #2
Comprehension

Contribution I:
A Replication Study on the Usage of Code 
Vocabulary to Predict Flaky Tests, MSR 
2021

Contribution II:
FlakyCat: Predicting Flaky Tests 
Categories using Few-Shot Learning, 
AST 2023

Contribution IV:
The Importance of Discerning Flaky from 
Fault-triggering Test Failures: A Case 
Study 
on the Chromium CI, 
under submission

Contribution III:
What Made This Test Flake? Pinpointing 
Classes Responsible for Test Flakiness, 
ICSME 2022

Challenge #1
Adoption
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Conclusion
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Future work
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❖   Machine Learning Interpretability ❖   Practitioners studies

Introduction Contribution I Contribution II Contribution III Contribution IV Conclusion

❖   Continuity of these contributions:

• More accurate prediction and location, other features to consider



Contribution #1
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List of publications

S. Habchi, G. Haben, M. Papadakis, M. Cordy, Y. Le Traon, A qualitative study on the sources, impacts, and 
mitigation strategies of flaky tests, ICST 2022

G. Haben, S. Habchi, M. Papadakis, M. Cordy, Y. Le Traon, A Replication Study on the Usability of Code Vocabulary in 
Predicting Flaky Tests, MSR 2021

A. Akli, G. Haben, S. Habchi, Predicting flaky tests categories using few-shot learning, AST 2023

S. Habchi, G. Haben, J. Sohn, A. Franci, M. Cordy, M. Papadakis, Y. Le Traon, What made this test flake? Pinpointing 
classes responsible for test flakiness, ICSME 2022

G. Haben, S. Habchi, M. Papadakis, M. Cordy, Y. Le Traon, The Importance of Discerning Flaky from Fault-triggering 
Test Failures: A Case Study on the Chromium CI, ArXiv

Publishe
d

Under 
submission



• https://figshare.com/s/5b252c442fc36e8823cb
• https://github.com/serval-uni-lu/FlakyVocabularyReplication
• https://github.com/serval-uni-lu/FlakyCat
• https://github.com/serval-uni-lu/sherlock.replication
• https://github.com/serval-uni-lu/DiscerningFlakyFailures

FlakyCat, 451 flaky tests + categories 
https://github.com/serval-uni-lu/FlakyCat/tree/main/data
Chromium, builds + failures information 
https://figshare.com/articles/dataset/dataset/22354141
 

Contribution #1
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Enabling Open Science
Replication packages

Datasets

https://figshare.com/s/5b252c442fc36e8823cb
https://github.com/serval-uni-lu/FlakyVocabularyReplication
https://github.com/serval-uni-lu/FlakyCat
https://github.com/serval-uni-lu/sherlock.replication
https://github.com/serval-uni-lu/DiscerningFlakyFailures
https://github.com/serval-uni-lu/FlakyCat/tree/main/data
https://figshare.com/articles/dataset/dataset/22354141
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Classifier (Random Forest) performance

1. Per project, in time and non-time sensitive settings

Introduction Contribution I Contribution II Contribution III Contribution IV Conclusion



84

2. FlakyCat performance per category

Example of a test misclassified 
as Async wait

Commit message:
“A latch was being release before ensuring that the condition 
it was guarding for was fulfilled. This created a race that most 
of the time was won by the desired thread, but it was flaky.”

Introduction Contribution I Contribution II Contribution III Contribution IV Conclusion
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2. FlakyCat performance per category

Interpretation

Performance varies depending on the categories

Example of a test misclassified 
as Async wait

Commit message:
“A latch was being release before ensuring that the condition 
it was guarding for was fulfilled. This created a race that most 
of the time was won by the desired thread, but it was flaky.”

Introduction Contribution I Contribution II Contribution III Contribution IV Conclusion
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2. FlakyCat Metrics

Introduction Contribution I Contribution II Contribution III Contribution IV Conclusion

Then 3 possibilities:

Micro-averaged: all samples equally contribute to the final averaged 
metric

Macro-averaged: all classes equally contribute to the final averaged 
metric

Weighted-averaged: each classes’s contribution to the average is 
weighted by its size (1vsAll)
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2. FlakyCat Validation

Introduction Contribution I Contribution II Contribution III Contribution IV Conclusion

10-fold Cross validation on the training set (75% of data)

Check performance on hold-out set (25% of data) 

Unseen data in hold-out set (no leakage of oversampled elements
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2. FlakyCat

Introduction Contribution I Contribution II Contribution III Contribution IV Conclusion

Test smells prediction



Genetic Programming
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Global formula

x30

GP Models
SBFL + Change Metrics

x30

GP Models
SBFL + Size Metrics

~50% flaky classes identified in the top 3
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Chromium
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Chromium
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Conclusion
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