Test Flakiness Prediction Techniques
for Evolving Software Systems

Presented by:
Guillaume HABEN, University of Luxembourg, Luxembourg

Defense committee:

Prof. Dr. Mike Papadakis, = Chairman, University of Luxembourg, Luxembaurg
Dr. Maxime Cordy, Vice-chairman, University of Luxembourg, Luxembourg R
Prof. Dr. Yves Le Traon, Supervisor, University of Luxembourg, Luxembourg '
Prof. Dr. Arie Van Deursen, Member & TU Delft, The Netherlands o
Prof. Dr. Javier Tuyq, Reviewer, Universidad de Oviedo, Spain

Member & Y
Date: Reviewer, ' A

June 29", 2023

UNIVERSITE DU
LUXEMBOURG

securityandtrust.lu

Introduction Contribution I Contribution II Contribution III Contribution IV Conclusion

M

Introduction Contribution I Contribution II Contribution III Contribution IV Conclusion

Software Testing

Identifying issues and defects before software is released

Benefits:

* More reliable

More secure %

More performant

©

Save money *@

Customer satisfaction

B Pr <

Introduction Contribution I Contribution II Contribution III Contribution IV Conclusion

-

¢
A~
3

Introduction Contribution I Contribution II Contribution III Contribution IV Conclusion

Google

>10k software engineers

>100m lines of code projects

>1 000 commits per hour

Introduction

Challenges

Testing Large Softwarg

a Handle Large Amounts of TeSts

Hundreds of thousands of tests

Avoid Anti-Patterns

Regression Test Selection

Test Case Prioritization

Test Refactoring

a Manage Multi-Environments j

Dev, Test, Prod

" 08
Distributed Testing I e I
&8

Platform Dependencies

Introduction Contribution I Contribution II

Definition

“A flaky test is a test that
can both pass or fail when executed several times

on the same version of a program”

Introduction Contribution I Contribution II Contribution III Contribution IV Conclusion

Consequences for developers

Gives confusing signals

N

-

Real bug? False alert?

TEST \
°—
o—
°—

Introduction Contribution I Contribution II

Contribution III

Contribution IV Conclusion

Investigations

2022 IEEE Conference on Software Testing, Verification and Validation (ICST)

A Qualitative Study on the Sources, Impacts, and
Mitigation Strategies of Flaky Tests

Sarra Habchi Guillaume Haben Mike Papadakis
University of Luxembourg University of Luxembourg University of Luxembourg
sarra.habchi @uni.lu illaume.| ilu michail i i.lu

Maxime Cordy
University of Luxembourg
‘maxime.cordy @uni.lu

Abstract—Test flakiness forms a major testing concern. Flaky
tests manifest non-deterministic outcomes that cripple continu-
ous i ion and lead to investigate false alerts.
Industrial reports indicate that on a large scale, the accrual of
flaky tests breaks the trust in test suites and entails significant
computational cost. To alleviate this, practitioners are constrained
to identify flaky tests and investigate their impact. To shed light
on such mitigation mechanisms, we interview 14 practitioners
with the aim to identify (i) the sources of flakiness within
the testing ecosystem, (ii) the impacts of flakiness, (iii) the
measures adopted by practitioners when addressing flakiness,
and (iv) the automation opportunities for these measures. Our
analysis shows that, besides the tests and code, flakiness stems
from interactions between the system the testing

Yves Le Traon
University of Luxembourg
yves.letraon@uni.lu

are among the main categories of test flakiness. Notably, the
study of Eck et al. [7] showed that flakiness can stem from
the code under test and highlighted its potential impact on
organisational aspects like resource allocation.

Other studies investigated tools and techniques that could
help developers to cope with test flakiness. Automated tools,
such as DeFlaker [11], iDFlakies [12], and FlakeFlagger [13]
have been developed in order to detect flaky tests with a
minimum number of test runs or re-runs. Unfortunately, these
advances offer only partial solutions to the problem and may
not fit well within the P! systems and isati

infrastructure, and external factors. We also highlight the impact
of flakiness on testing practices and product quality and show that
the adoption of guidelines together with a stable infrastructure
are key measures in mitigating the problem.

1. INTRODUCTION

Software Testing is critical for modern software develop-
ment as it allows the concurrent implementation and inte-
gration of features. At Google, more than 50 million test
cases are executed every day to ensure the quality of their
products [1]. Though, test automation faces major problems
with the emergence of flaky tests [2]-[4]. Flaky tests are
tests that, for the same versions of code and test, can pass and
fail on different runs. Such non-determinism sends confusing
signals to developers who struggle to interpret the test results.
As a result, developers lose trust in test suites, disregard their
signals and integrate features containing real failures, thereby
nullifying the purpose of testing.

g, Verification and Validation (ICST) | 978-1-6654-6679-0/22/$31.00 ©2022 IEEE | DOI: 10.1109/ICST53961.2022.00034

For instance, DeFlaker relies on coverage and
reruns of tests that do not execute changed code, which are
not possible in specific development environments that use
regression test selection or when coverage cannot be obtained.
Furthermore, the fixing of flaky tests gained traction as studies
investigated the fixing effort devoted for flaky tests and tools
like [14] are designed to fix flaky tests. Nonetheless, in order
to devise flakiness solutions, we need to understand how
developers deal with flaky tests in practice. In particular,
it is necessary to identify the typical measures taken by
practitioners when dealing with flaky tests, and reflect on how
research solutions could assist and improve them.

To shed some light on these questions, we conduct an
empirical study focused on the industrial context in which
flakiness manifests. Specifically, we perform a qualitative
analysis on data collected from 14 practitioner interviews to
answer the following research questions:

+ RQ1: Where can we locate flakiness?

Dealing with flakiness:

Ignore — # flaky tests will grow

Remove — Lose test information

Quarantine — Postponing actions

Fix = Rarely achieved

Reruns — Go to “solution”

Habchi, Sarra, et al. "A Qualitative Study on the Sources, Impacts and Mitigation Strategies of Flaky Tests" Proceedings of the 15th International Conference

on Software Testing, Verification and Validation (ICST), 2022

Introduction

Why does it matter?

Flaky tests often accounts for 1-5%

Flakiness increases costs both time-wise and computer-wise

[At Google: up to 16% of testing budget spent just to rerun flaky tests

Flakiness reduces productivity (delay builds) and trust

This leads to bad quality

[Major problem in software testing]

Micco, John and Memon, Atif "GTAC 2016: How flaky tests in continuous integration”, https://www.youtube.com/watch?v=CrzpkF1-VsA, 2016 10

https://www.youtube.com/watch?v=CrzpkF1-VsA

Introduction

Concrete example of a flaky test

https://github.com/python-telegram-bot/python-telegram-bot/blob/master/tests/test updater.py
def (’ 14):

updater.start polling(0.0 1)
Thread (=partial (self.signal sender, =updater)) .start ()
caplog.at level (logging.INFO) :
updater.idle()
rec = caplog.records]|]
rec.getMessage () .startswith ({signal.SIGTERM } ")
rec.levelname ==
caplog.records|
rec.getMessage () .startswith ()
rec.levelname ==

If we get this far, idle() ran through
sleep ()

rec

updater.running 1is False

Introduction Contribution I

Contribution II

Contribution III

Contribution IV

Conclusion

Root cause

Categories of flakiness

ey o

Ny

Category

| Definition

Sources

Asynchronous Waits

Flakiness caused by tests that involve asynchronous op-
erations and have dependencies on timing, resulting in
inconsistent behaviour if the expected response is not
received within a specified time.

(49], [58], [61], [62]

Concurrency

Flakiness caused by race conditions or synchronisation
issues when multiple threads or processes interact with
shared resources simultaneously, leading to unpredictable
outcomes.

(49], [58], [61], [62]

Time

Tests depending on specific timing conditions, such as
time-sensitive calculations or time-based events, and may
produce different results based on the time of execution.

[49], [58], [61], [62]

Order-Dependency

Flakiness resulting from tests that rely on a specific
execution order due to shared resources or dependencies,
and may fail if the order among the tests is changed.

[49], [58], [61], [62]

Randomness

Flakiness caused by tests that involve random or pseudo-
random behaviour, where different outcomes may occur
on each run, potentially leading to inconsistent results.

49], [58], [61], [62]

Unordered Collections

Flakiness resulting from tests that rely on unordered
collections or sets, where the order of elements can vary,
causing failures if the expected order is not maintained.

(58], [61], [62]

Network

Flakiness caused by network-related issues, such as un-
reliable connections, timeouts, or network congestion,
leading to inconsistent results in tests that interact with
remote services.

[49], [58], [61], [62]

I/O (Input/Output)

Flakiness resulting from tests that involve reading from
or writing to external files, databases, or other I/O oper-
ations, where inconsistencies or errors can occur.

49], [58], [61], [62]

Resource Leak

Flakiness caused by tests that do not release system
resources properly, resulting in resource exhaustion and
inconsistent behaviour when run repeatedly.

(49], [58], [61], [62]

Floating Point

Flakiness caused by tests that rely on the results of float-
ing point operations, which can suffer from discrepancies
and inaccuracies due to precision limitations, overflows,
non-associative addition, and other factors.

Platform Dependency

Flakiness stemming from tests relying on specific func-
tionalities of an operating system, library version, or
hardware vendor. These dependencies can result in incon-
sistent and non-deterministic test failures, especially in
cloud-based continuous integration environments where
tests are executed on different platforms.

Test Case Timeout

Flakiness caused by tests that specify an upper limit for
the test execution duration. Often those tests will fail
because the instructions will not complete in time.

(49], (58], [62]
[49], [61]
[49], [61]

12

Introduction

State of the Art

Focus of Academic Research on Flakines’

Detection

pirical Studie

iDFlakies

Shaker

DeFlaker
Prevalence
Prediction

Industrial

Open
Source

iFixFlakies

Introduction Contribution I Contribution II Contribution III Contribution IV Conclusion

Al for SE

The Rise of Artificial Intelligence in the Software Development Industry

Mining Historical Test Logs to Predict Bugs and
Localize Faults in the Test Logs

- Anunay Amar and Peter C. Rigby

Department of Computer Science and Software Engineering
Concordia University

Montréal, Canada
125

Software Defect Prediction via Convolutional Neural Network

Publisher: IEEE PDF

Jian Li ; Pinjia He ; Jieming Zhu ; Michael R. Lyu All Authors

100

75

50

Market revenue in billion U.S. dollars

25

Vulnerability Prediction From Source Code
Using Machine Learning

2018 2019* 2020* 2021* 2022* 2023* 2024* 2025*

ZEKI BILGIN , (Member, IEEE), MEHMET AKIF ERSOY, ELIF USTUNDAG SOYKAN,
EMRAH TOMUR, PINAR COMAK, AND LEYLI KARACAY

Ericsson Research, 34367 Istanbul, Turkey

© Statista 2023 &

Market revenue in billion of S

https://www.statista.com/statistics/607716/worldwide-artificial-intelligence-market-revenues/

14

Introduction

State of the Art

Evolution of the Research Interest on Flakiness

Number of published papers mentioning:

Documents by year Documents by year
40 12
35
10
30
0 25 2] 8
& =
E 2 £ 6
=
8 8
a 15 a
4
10
2
5
0 0
2014 2015 2016 2017 2018 2019 2020 2021 2022 2018 2019 2020 2021 2022
Year Year
o" ” o ” ' ”n o ” o H ”n
flaky” AND “tests flaky” AND “tests” AND “predict

https://www.scopus.com/

Introduction

Can we also use Al to fight against flakiness?

Introduction Contribution I Contribution II Contribution III Contribution IV Conclusion

Background

Metrics for binary classification models

Precision =
TP + FP
: " Recall = TP
Negative Positive TP + FN

Precision X Recall

F1=2 X

Precision + Recall

Positive TP MCC

_ TP X TN —FP X FN
J(TP+FP)(TP+FN)(TN+FP)(TN+FN)

€ [-1, 1]

—_— 00 C ~+ 0 P>

17

Introduction

Challenges

Challenge #1 Challenge #2
Adoption Comprehension
* Bridge the gap between * Understand and locate sources of
Academia and Industry flakiness
* More realistic validation » Better assist developers

e Concrete case studies

18

Introduction

Question I:

Can we predict flaky tests?

/
N

]

Can we predict the category of
flaky test?

TEST L

§ TE
o] TEST
0] 0 —

a

5

N

Question |V:

Are existing prediction
techniques suitable to
real-world CI?

Question Il

Can we locate the source of flakiness?

19

Contribution #1

Introduction Contribution I

Motivation

Reruns are costly

Introduction Contribution I

Motivation

Released datasets

* DeFlaker (ICSE 2018)
* iDFlakies (ICST 2019)

Static Prediction

22

Introduction Contribution I

Vocabulary-based Approach

Intuition

Idea:
* Relation between certain tokens and flakiness

Advantages:

* Easy to use
* Fast

Representing Test Code
Bag-of-words, n-grams, TF-IDF

— Counting the occurrences of words/tokens

Example

@test

exampleTest(param A) {
some.instruction();
some.other(instruction);
assert(correct);

K» some
instruction

other

assert

correct

Introduction Contribution I

Vocabulary-based Approach

Model overview

Pinto, Gustavo, et al. "What is the vocabulary of flaky tests?" Proceedings of the 17th International Conference on Mining Software Repositories (MSR), 2020

TEST
[Y —
P- Y—
°—
—~- - ———mm_—_——_,—_—_—_—_—,——— - N —~ ———————— -
/ / .
' \ + ! Classifies as
Bag of words : |
I I
I some 2 I |
[@ I | Flaky
| @ instruction 2 [I
I other 1 | | @ Non-Flaky
: assert 1 ; |
| I |
\ correct 1 1 \
\ L T e e S — - / \ [T

-

-—ees e s - - - . .

Introduction Contribution I

Original study by Pinto (MSR 2020)

Dataset and Results

Dataset: DeFlaker
1,348 flaky tests from 6 Java projects

Algorithm Precision Recall F1 MCC AUC
Random Forest 0.99 0.91 0.95 0.90 0.98
Decision Tree 0.89 0.88 0.89 0.77 0.91
Naive Bayes 0.93 0.80 0.86 0.74 0.93
Support Vector 0.93 0.92 0.93 0.85 0.93
Nearest Neighbour 0.97 0.88 0.92 0.85 0.93

Pinto, Gustavo, et al. "What is the vocabulary of flaky tests?." Proceedings of the 17th International Conference on Mining Software Repositories. 2020.
Bell, Jonathan, et al. "DeFlaker: Automatically Detecting Flaky Tests" Proceedings of the 40" International Conference on Software Engineering (ICSE), 2018

25

Adoption 0

Can we predict flaky tests...

iIn more realistic settings?

Introduction Contribution I

Motivation

The importance of intra-project analysis and time-sensitive validation

inter-project

~— - Original work

______ l

intra-project

This work

______ l

No time-sensitivity

Original work

______ l

time-sensitivity

Training set Test set
A A

B 4 N
r, r, L Revisions

I i | } i | i

This work

______ l

27

Introduction

Contribution I

Contribution II

Contribution III Contribution IV Conclusion

1. Per project, in time and non-time sensitive settings

Classifier (Random Forest) performance

Project | Earliest revision latest revision #FT #NFT
achilles 2015-10-30 2016-09-05 51 392
hbase 2010-05-17 2010-06-21 98 120
okhttp 2014-03-06 2015-01-30 102 1178
oozie 2013-03-20 2013-05-31 1039 44
oryx 2015-01-06 2015-02-27 38 286
togglz 2016-01-23 2016-06-17 20 256

Mcc

B Non time-sensitive [J] Time-sensitive

1.00

0.75

0.50

0.25

0.00
achilles hbase okhttp oozie oryx togglz

Projects

[Intra-projects and time-sensitive analysis give lower performance,]

but the prediction of flaky tests is still promising

28

Introduction Contribution I

2. Generalisable to other programming languages

Dataset and Experimental setup

Project SHA #FT #NFT

Github Mining bokeh ddc22b8 100 2505
cassandra-dtest 8cb6bd2 72 4221

celery 0833a27 54 2890

: jira 7fa3ad5 131 59

Python projects T 864873 32 1612
@flaky annotation python-amazon 84cl6f5 35 15
python-telegram-bot | 8e7c0d6 186 1382

spyder 413c994 173 1086

typed-python 96e7ebd 54 6034

29

Introduction Contribution I

2. Generalisable to other programming languages

Classifier performance for Python projects

Project Precision Recall F1 MCC AUC
bokeh 1.00 0.91 095 0.95 0.95
cassandra-dtest 0.96 0.43 0.58 0.63 0.71
celery 0.85 0.54 0.64 0.66 0.77
jira 0.98 0.99 0.99 0.95 0.98
pipenv 0.78 0.19 0.30 0.37 0.60
python-amazon 0.97 1.00 0.99 0.95 0.96
python-telegram-bot 1.00 0.99 1.00 0.99 1.00
spyder 0.92 0.77 0.83 0.82 0.88
typed-python 1.00 0.86 0.91 0.92 0.93

Vocabulary-based prediction is generalisable to other programming
languages

Introduction Contribution I

3. Predicting manifest flaky tests?

Experimental setup and results

Project #reruns #@flaky #manifest FT
bokeh 200 100 1
celery 300 54 2
python-telegram-bot 300 186 20
Project Precision
python-telegram-bot 1.00

Models can help developers mark flaky tests as flaky

31

Take-away messages

[A promissing approach to assit developers]

a / [Enough data required to reach good accuracy

/

[Important to validate approaches in realistic settings

32

Introduction Contribution I Contribution II

=)

uestion I: uestion Il
Can we predict flaky tests? E E TEST Can we predict the category of a

/ - flaky test? ,
\ EJ Fﬁm . @ég
= o] TEST =
g EJ %°
Question 1V: Question llI:
Are existing prediction Can we locate the source of flakiness?

TES techniques suitable to
real-world CI?

5

N
T

33

R

Contribution #2 |

Introduction Contribution I Contribution II

Real case of a flaky test

https://github.com/python-telegram-bot/python-telegram-bot/blob/master/tests/test updater.py
(’ /)
updater.start polling(0.0 1)
Thread artial (.signal sender, =updater)) .start ()
caplog.at 1€ (logging.INFO) :
updater.idle()
rec = caplog.records]|]

rec.getMessage ()= swith (signal .SIGTERM } ")
rec.levelname ==

?
caplog.records Network call/latency?
rec.getMessage () swith ()
rec.levelname ==

If we get this far, idle() ran through
sleep ()

updateNrunning

Concurrency issue?

rec

Asynchronous wait?

Introduction Contribution I Contribution II

Motivation

Understanding the cause of a given flaky test remains
challenging

Too many flaky tests increase the technical debt, devs need
to fix it

Can we use static prediction again?

Problem: How to handle the shortage of data?

Introduction Contribution I Contribution II

Data Collection

| Data
Dqtqset Class ‘ Original ‘ Short ‘ Augmented
Async waits | 125 | 97 | 300
EXiSting datasets Test order dependfancy ‘ 103 ‘ 100 ‘ 284
Unordered collections | 51 | 48 | 146
* Luo Concurrency ‘ 48 ‘ 40 ‘ 124
* Barbosa Time | 42 | 38 | 110
« Habchi Network 31 | 25 | /
« iFixFlakies Randomness | 17 | 14 | /
Test case timeout | 4 | 9 | /
Github mining Resource leak | 10 7 /
Platform dependency ‘ 2 ‘ 2 ‘ /
Too restrictive range | 3 |2 | /
Over-sample Data (SMOTE) 1/0 2 | 2 |/
Floating point operations ‘ 3 ‘ 1 ‘ /
Total | 451 | 385 | 964

Barbosa, Keila, et al. "Test Flakiness Across Programming Languages" Transactions on Software Engineering (TSE), 2022
Habchi, Sarra, et al. "What Made This Test Flake? Pinpointing Classes Responsible for Test Flakiness" Proceedings of the 38" International Conference on Software Maintenance and Evolution (ICSME), 2022
Luo, Qingzhou, et al. "An Empirical Analysis of Flaky Tests" Proceedings of the 22" Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (FSE), 2014

Shi, August, et al. "Ifixflakies : A framework for automatically fixing order-dependent flaky tests" Proceedings of the 27" Joint European Software Engineering Conference and Symposium
; .) 37
on the Foundations of Software Engineering (FSE), 2019

Introduction Contribution I Contribution II

FlakyCat: Siamese networks + Few-Shot Learning

Intuition

Pros:
e Semantic-aware

* More robust to class imbalance

* Generalize even with few labeled samples

Introduction Contribution I Contribution II

FlakyCat: Siamese networks + Few-Shot Learning

Model Overview

N

Async wait

Few-shot Learning * Concurrency

* Unordered Collection

* Test Order Dependency
* Time

Similarity —_—

Classifier

Principal Component Analysis
Before P P y After \/

i - @ .
. 2P : - ® - s 40
o?® : ..’. . .
40 . ™ . : ...-.o .b
d -’ . . 20 Y o £e o | S
~N 20 ® . v - - . ~N . .Q.'.;" :o:’l i
E e o. - 3 - E $ ‘\‘ :l‘,-pg', * &
B 0] et et % e g 01" il 2
E . e N ¢ K o E b b
S 201 ° n 20 %20, > = S H
¥ SRR P -20 >
o * oy P
-40 Ue =S .
.
S om . -40 .
-60
-40 -30 -20 -10 0 10 20 30 -40 -20 0 20 40
Component 1 Component 1

39

Introduction Contribution I

Contribution II

Existing Code Representation Techniques

Vocabulary

@test

exampleTest(param A) {
some.instruction();
some.other(instruction);

—

Test smells

Examples:

- Assertion roulette
- Eagertest

- Resource optimist

assert(correct);
Y

- @test

. : exampleTest(param A) {

instruction some.instruction();

other M@

1 assert(correct);

assert }

correct ’
Sleepy test

—

CodeBERT

Large Language Models

Pre-trained on 6 Programming Languages

['<s>', 'Gpublic',

'Gvoid', 'Gtest',

‘Failure’, '0{"...};",
‘</s>]

public void ['Gpublic', ‘Gvoid',
testFailure(){ Sk ation ‘Gtest', 'Failure’,

ADD CLS & SEP

Tokens to ids

[0, 285, 13842,
1296, 45723,
CodeBERT | %] 49215, 48855, ...,
2]

0 - E3
Vector @ @ - (@
representation F@ @D' @DI

40

Introduction

Contribution I

Contribution II

1. Combinations of Code Representation and Model Type

Model ’

Smells-based

|

Vocabulary-based

CodeBERT-based

’ Precision ‘ Recall ‘ MCC ’ F1i ‘ AUC ‘ Precision ‘ Recall ‘ MCC ‘ F1i ‘ AUC ‘ Precision ‘ Recall ’ MCC ‘ F1i ‘ AUC

SVM | 011 | 034 | 000 [0.17] 050 | 0.61 | 052 | 037 |045| 066 | 027 | 043 | 022 | 0.33 | 0.60

KNN | 024 | 037 | 011 [029| 055 | 044 | 048 | 031 |045| 065 | 056 | 053 | 037 | 0.51 | 0.68

DT | 031 | 033 | 010 |023| 053 | 053 | 053 | 039 [052| 069 | 049 | 050 | 0.34 | 0.49 | 0.67

RF | 032 | 034 | 012 [024| 054 | 072 | 061 | 049 |056| 072 | 068 | 0.66 | 0.55 | 0.62 | 0.76

FSL | 013 | 018 | -0.01 |[0.13| 050 | 069 | 068 | 058 |067| 079 | 0.74 | 0.73 | 0.65 | 0.73 | 0.83
FlakyCat

Flaky Categories prediction is possible despite little data available]

41

Introduction Contribution I Contribution II Contribution III Contribution IV

Conclusion

2. FlakyCat performance per category

test order dependency

concurrency

async wait

Categories

unordered collections

time
00 02 04 06 08 10
Performances
[Performance varies depending on the categories

42

Take-away messages

{ Best performance is achieved using Siamese networks and CodeBERT J

[FlakyCat can predict flaky categories

[Challenges remain to accurately predict some categories

43

Introduction

Contribution I

Contribution II

Contribution III

uestion |:

Can we predict flaky tests?

pli=
N

]

uestion Il
Can we predict the category of
flaky test?

TEST L

§ TE
o] TEST
0] 0 —

a

5

N

Question |V:

Are existing prediction
techniques suitable to
real-world CI?

Question Il

Can we locate the source of flakiness?

44

R

Contribution #3 |

Introduction Contribution I Contribution II Contribution III

Motivation

Little research on fixing flakiness, often limited Flakiness sometimes originates from within the
to one category program

“Interestingly, not all flaky tests in this category origin in test

: o L . code: indeed, the developers report that in 34% of the cases

* ODRepair & iFixFlakies: Fix order dependencies the fixing process requires the examination of the production

« Flex: Fix randomness code and not of the test. Thus, test flakiness can be originated
by the production code”

“Some fixes to flaky tests (24%) modify the CUT, and most of
these cases (94%) fix a bug in the CUT.”

Help devs to locate flakiness when it originates from the program

Luo, Qingzhou, et al. "An Empirical Analysis of Flaky Tests" Proceedings of the 22" Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (FSE), 2014

Eck, Moritz, et al. "Understanding Flaky Tests: The Developer’s Perspective" Proceedings of the 27th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (FSE), 2019

Comprehension

Can we use Fault Localisation techniques

to find flaky components?

47

Introduction Contribution I Contribution II Contribution III

Fault localisation

< To find bugs/faults
% Most effective technique

< Spectrum-Based Fault Localisation (SBFL)
— Relies on test coverage and test outcome

Introduction Contribution I Contribution II Contribution III

Background

Regular Spectrum-Based Fault Localisation

Goal: Finding faulty components based on coverage information

| Output:
Tests Ranked list of elements to inspect.
Line Program Susp. score
i 2 - 1%t stmt: most suspicious
(I int maximum(int a, int b) { - . 0.5 - Last stmt: least suspicious
2 if (a > b) { u u 0.5
3 return b; //Fix: return a; u | 1
4 } L O 1
o else { O & 0
6 return b; O u 0
7 } O - 0
8 B X v

SBFL

Example
49

Introduction Contribution I Contribution II

Contribution III

Our approach

Spectrum-Based Flakiness Localisation

TABLE II: SBFL formulae adapted to flakiness.

Name Formula
Ochiai [42 =
chiai [42] Viestnys)(estes)
P €s

Barinel [43] 1- cater

ef
Tarantula [44], [45] e fef+nfes

ef —i—nf t es+mng

DStar [34] -

7
1.4

7
1.4

Instead of Failing tests and
Using tests and

Focus on ranking classes

tests

tests

50

Introduction Contribution I Contribution II Contribution III

Data Collection
Approach

Looking for flakiness-fixing commits: flaky tests with corresponding “flaky” class

1. Search: Look for commits in large Java projects containing flaky keyword

2. Inspect: Limit to atomic commits fixing CUT (fix, repair, patch keywords)

3. Coverage: Build, run the test suite and get the coverage matrix for all tests

Introduction

Data Collection

Dataset

TABLE I: Collected Data. ffc: number of flakiness-fixing
commits. all: number of commits in the project.

Proj. #Commits #Tests #Classes

ffc all min - max avg min — max avg

Hbase 8 18,990 | 138 -2,089 1,113 | 734 - 1366 1053.4
Ignite 14 27,903 15 - 1,018 174 72 — 1767 1262.3
Pulsar 10 8,516 194 - 1,326 626 171 — 422 259.7
Alluxio 3 32,560 315 - 694 473 131 - 817 360.3
Neo4;j 3 71,824 | 21-5,782 2,139 | 40 - 1663 581.3

Total 38 15 -5,782 905 40 - 1767 820.2

Introduction Contribution I Contribution II Contribution III

Evaluation Metrics

©

acc@n Accuracy: Number of flaky classes ranked in the top n

)
wef <§ Wasted Effort: Number of classes inspected before reaching the flaky class

|
Rwef "1 Relative effort : Effort wrt the number of covered classes [0, 100]

53

Introduction Contribution I

Contribution II

Contribution III

Can we use SBFL to identify flaky classes?

Project Total acc wef (Ryer)

@1 @3 @5 @10 mean med
Hbase 8 1 4 5 5 13.12 (16) 2.5 (5)
Ignite 14 0 3 3 5 | 214.93 (21) 20.0 (4)
Pulsar 10 3 5 6 9 9.20 (23) 3.0 (9
Alluxio 3 0 0 0 1 | 101.67 (65) 86.0 (83)
Neo4;j 3 1 2 2 2 23.33 (43) 1.0 (18)
Total 38 5 14 16 22 94.24 (26) 6.5 (8)
Percentage (%) 100 13 37 42 58 - -

54

Introduction Contribution I Contribution II

Contribution III

Can we improve the initial performance?

Considering other metrics

Flakiness metrics

Change metrics

Size metrics

TABLE III: Code and change metrics used to augment SBFL.

‘ Metric ‘ Definition
#TOPS Number of time operations performed by the class.
#ROPS Number of calls to the random () method in the
class.
#IOPS Number of input/output operations performed by the
2 class.
é #UOPS Nurpber of operations performed on unordered col-
T lections by the class.
#AOPS Number of asynchronous waits in the class.
#COPS Number of concurrent calls in the class.
#NOPS Number of network calls in the class.
o Changes Number of unique changes made on the class.
_§ Age Time interval to the last changes made on the class.
O | Developers | Number of developers contributing to the class.
LOC The number of lines of code.
é CC Cyclomatic complexity.
DOI Depth of inheritance.

55

Introduction

Contribution I

Contribution II

Contribution III

Can we improve this initial performance?

TABLE VI: RQ2: The contribution of flakiness, change, and size metrics to the identification of flaky classes.

SBFL & flakiness SBFL & change SBFL & size
Proj. (#) acc wef (Ryef) acc wef (Ryef) acc wef (Rye f)
@1 @3 @5 @10 | mean med | @1 @3 @5 @10 | mean med | @1 @3 @5 @10 | mean med
Hbase (8) 1 4 5 5 11.9 (12) 34 2 4 4 5 16.9 (13) 4 4 2 4 5 5 11.4 (12) 3(3)
Ignite (14) 0 2 2 4 | 230.9 (26) 63 (4) 2 4 4 4 | 2223 (24) 18 (4) 1 3 3 5 | 220.1 (24) 43 (4)
Pulsar (10) 2 5 6 8 10.2 (15) 3(8) 3 5 7 9 8.0 (12) 2 (5) 2 5 7 9 6.9 (13) 2 (6)
Alluxio (3) 0 0 1 1 97.7 (51) 73 (65) 0 0 1 1 75.7 (49) 94 (39) 0 0 1 1 90.7 (49) 77 (58)
Neo4j (3) 1 2 2 2) 19.3 (42) 1 (18) 2 2 2 2 6.7 (37) 00 2 2 2 2 23.0 (40) 0 (10)
Total (38) 4 13 16 20 99.5 (24) 8 (8) 9 15 18 21 94.1 (21) 5 (6) T 14 18 22 94.3 (22) 5()
Percentage (%) 11 34 42 53 - - 24 39 47 55 - - 18 37 47 58 - -
5 14 16 22 Initial performance
13 37 42 58

Change and Size metrics have positive impacts

Introduction Contribution I Contribution II Contribution III

SBFL + Change + Size metrics

Project Total acc wef (Ryer)

@l @3 @5 @10 mean med
Hbase 8 3 5 6 6 9.62 (12) 1.5 (2)
Ignite 14 2 4 4 4 | 22861 (24) 1754
Pulsar 10 3 6 7 9 7.30 (12) 2.0 (5)
Alluxio 3 1 1 1 2 61.83 (22) 9.0 (10)
Neo4j 3 1 2 2 2 19.67 (42) 1.0 (18)
Total 38 10 18 20 23 94.61 (19) 3505
Perc (%) 100 26 47 53 61 - -

Almost 50% of classes responsible for flakiness are ranked in the top 3

Take-away messages

[We can leverage SBFL to find components in the code causing flakiness }

Together, SBFL, change and size metrics give the best results

'

] o

We need to further help developers J

58

Introduction Contribution I Contribution II Contribution III Contribution IV

uestion |: uestion ll:

Can we predict flaky tests? TEST Can we predict the category of a
: S flaky test? ,
8L\

o= *1eftest) .
g EJ N

PAN
-
| _Questiqn .IV: Question ll:
Are existing prediction Can we locate the source of flakiness?
TES techniques suitable to

real-world CI?

5

N
T

59

R

Contribution #4 |

Introduction Contribution I

Contribution II

Contribution III

Contribution IV

Motivation

Current Research on Flakiness Prediction

Study | Model | Feature category | Features | Benchmark | Target | Year
King et al. [91] Bayesian network | Static & dynamic Code metrics Industrial Flaky tests | 2018
Pinto et al. [92] Random forest Static Vocabulary DeFlaker Flaky tests | 2020
Bertolino et al. [93] KNN Static Vocabulary DeFlaker Flaky tests | 2020
Haben et al. [94] Random forest Static Vocabulary DeFlaker Flaky tests | 2021
Camara et al. [95] Random forest Static Vocabulary iDFlakies Flaky tests | 2021
Alshammari et al. [96] Random forest Static & dynamic COdeSEZflr; B FlakeFlagger | Flaky tests | 2021
Fatima et al. [97] Neural Network Static CodeBERT Fl.akeFla.gger Flaky tests | 2021
iDFlakies
Pontillo et al. [98] Logistic regression Static COdeSEZflrsl 8 & iDFlakies Flaky tests | 2021
Lampel et al. [99] XGBoost Static & dynamic Jobni:;erci::l;;mn Industrial | Flaky failures | 2021
Qin et al. [100] Neural Network Static Dependency graph | Industrial Flaky tests | 2022
Olewicki et al. [101] XGBoost Static Vocabulary Industrial Flaky builds | 2022
Ackli et al. [102] Siamese Networks Static CodeBERT Various Flaky tests | 2022

Most of the previous research focuses on predicting flaky tests using vocabulary features

Introduction Contribution I Contribution II

Contribution III

Contribution IV

Conclusion

Case study: Chromium

Large project with its own custom CI Framework:
~80 million LOC

Built for hundreds of OS and versions

t‘ i
3

62

Introduction Contribution I

Contribution II

Contribution III

Contribution IV

Conclusion

Definitions
Builds

1 build: specific revision

Either:

Builder: Compiles the project

- Specific version, instrumentations, OS

Tester: Runs regression tests

~200,000 tests (unit, integration, GUI)

63

Introduction Contribution I

Contribution II

Contribution III

Contribution IV

Definitions

Tests and Failures

Execution within
a build

o > _—
o_
o—

Failure

Identified as

O w——
/ Flaky test
\\ TES

Fault-revealing test

Flaky failure

Fault-triggering failure

64

Introduction Contribution I Contribution II Contribution III Contribution IV

ldentifying flaky tests

e ~
Input: Test
\ y,
Run the
test

J
[PASS }

(2=] %y

&k FAULT—REV]

EALING

Introduction Contribution I Contribution II

Contribution III

Contribution IV

Data collection

Dataset
Testas Nb of Builds Period of Time Number of Tests Number of Failures
From To Passing Flaky Fault-revealing | Flaky Fault-triggering
Linux Tests | 10,000 | Mar 2, 2022 Dec 1, 2022 | 198,273 23,374 2,343 | 1,833,831 17,171
30
500 1 ' 25 ¢
k) ¢
‘§ 400 A 20
% 3001 15 1
s
§ 200 - 10 -
E
< 100 - - I
0 ! 1 —

Flaky

Fault-revealing

Number of and fault-revealing test per builds

66

Introduction Contribution I Contribution II Contribution III Contribution IV

Facts, Intuition and Questions

« Fault-revealing tests are blocking, and require investigations

« Costs come from reruns. Reruns occur when there is (at least) one test failure

- Flaky tests are failing because of contextual conditions present during one of their

executions

Can we predict failures as flaky or fault-triggering?

Introduction

Contribution I

Contribution II

Contri

bution III

Contribution IV

Retrieved features

Feature Name ‘ Feature Description

buildld

The build number associated
with the test execution

flakeRate

The flake rate of the test over the last

35 builds

runDuration

The time spent for this test execution

runStatus

ABORT
FAIL
PASS
CRASH
SKIP

runTagStatus

CRASH

PASS

FAIL

TIMEOUT

SUCCESS

FAILURE
FAILURE_ON_EXIT
NOTRUN

SKIP

UNKNOWN

testSource

‘ The test source code

testSuite

[The test suite the test belongs to

testld

‘ The test name

The flake rate is often used in the industry
to quantify the level of flakiness of a test

label
223 Fault-revealing tests
Flaky tests

0.4 0.6 0.8 1.0
Flake rate

68

Introduction

Contribution I

Contribution II

Contribution III Contribution IV

Experimental settings

Model training

Random Forest Classifier

1 1

L.

3{3}%

]
]

4

Time-sensitive analysis

Training set Test set

N N

Build timeline

| |] | | | | | >

| | T T I T T T {

8,000 b 10,000

69

Introduction Contribution I Contribution II Contribution III Contribution IV

1. Performance of existing approaches

Precision ‘ Recall ‘ MCC ‘ FPR
99.2% | 98.9% | 0.20 | 76.2%

TRAIN SET

200000

175000

ovo.:|
m
LI /i
—

o

552 1768
150000
B L 125000
©
v L 100000
o { .
L 80 A)J = - 75000
2435 215068 p—
| % TEST SET |
I I L 25000
I I [% Predicted label
0
I 20% ,

% of fault-triggering failures are classified as flaky (missed
faults)

Introduction Contribution I Contribution II Contribution III Contribution IV

Across builds

Flaky tests Fault-revealing tests

22,477 897 1,446

s of fault-revealing tests were found to be flaky in previous
builds

Introduction Contribution I

Contribution II

Contribution III Contribution IV

2. Focusing on failures

TRAIN SET

80% |

L
i % TEST SET
|
|

20%

Execution features ‘ Precision ’ Recall ‘ MCC ‘ FPR
No 99.7% ’ 91.3% | 0.25 ‘ 20.3%

Yes 99.5% 98.7% | 0.42 | 42.3%

Training on failures and adding execution
features improves the performance

Take-away messages

Approaches should focus on failures

A large part of flaky tests are valuable as they can reveal faults

Dynamic/contextual features can help

Additional work is heeded to effectively distinguish flaky from non-flaky
failures

73

Conclusion

Introduction Contribution I Contribution II Contribution III Contribution IV Conclusion

@)
Question | Question |l:
Can we predict flaky tests? Can we predict the category of a flaky test?
« Promising Ti! « Promising despite little data
« Data needed L / v » Categories support
» Realistic validation A,' \ — :
JES] TESTL
i _EJ %°
. '
Question |V: Question llI:
Are existing prediction techniques suitable to Can we locate the source of flakiness?

real-world CI?

« FL for flakiness loc.
* Finer granularity?

TES » Difficult problem

s—=| < Focus on failures
/
\

« Consider dyn. features

TEST I
o—
P Y—

Al

75

Introduction Contribution I Contribution II Contribution III Contribution IV Conclusion

Challenges

Challenge #1 Challenge #2
Adoption Comprehension
e Time-Sensitive Validation * Category Prediction
* Intra-Project Analysis * Flakiness Location

* Chromium Case Study

76

Introduction

Contribution I Contribution II

Con

tribution III Contribution IV Conclusion

Contributions

Challenge #1
Adoption

Contribution I:

A Replication Study on the Usage of Code
Vocabulary to Predict Flaky Tests, MSR
2021

Contribution 1V:

The Importance of Discerning Flaky from
Fault-triggering Test Failures: A Case
Study

on the Chromium Cl,

under submission

Challenge #2
Comprehension

\

@ Y

Contribution ll:

FlakyCat: Predicting Flaky Tests
Categories using Few-Shot Learning,
AST 2023

Contribution lli:

What Made This Test Flake? Pinpointing
Classes Responsible for Test Flakiness,
ICSME 2022

77

Introduction Contribution I

Contribution II

Contribution III

Contribution IV

Conclusion

Conclusion

78

Introduction

Contribution I

Contribution II

Contribution III

Contribution IV

Conclusion

Future work

\/
2 %4

7/
%

Continuity of these contributions:
* More accurate prediction and location, other features to consider

Machine Learning Interpretability

%

,/

T

|

% Practitioners studies

—
—
s
_—
= a
/}_.
=4
=
::—;,,-’7;'
'._-'_-:_":.."-'-__J'
—— -

79

List of publications

Under
submission 80

Enabling Open Science

Replication packages

https://figshare.com/s/5b252c442fc36e8823cb
https://github.com/serval-uni-lu/FlakyVocabularyReplication

https://github.com/serval-uni-lu/FlakyCat

https://github.com/serval-uni-lu/sherlock.replication
- https://qgithub.com/serval-uni-lu/DiscerningFlakyFailures

Datasets

FlakyCat, 451 flaky tests + categories
https://github.com/serval-uni-lu/FlakyCat/tree/main/data

Chromium, builds + failures information
https://figshare.com/articles/dataset/dataset/22354141

81

https://figshare.com/s/5b252c442fc36e8823cb
https://github.com/serval-uni-lu/FlakyVocabularyReplication
https://github.com/serval-uni-lu/FlakyCat
https://github.com/serval-uni-lu/sherlock.replication
https://github.com/serval-uni-lu/DiscerningFlakyFailures
https://github.com/serval-uni-lu/FlakyCat/tree/main/data
https://figshare.com/articles/dataset/dataset/22354141

Test Flakiness Prediction Techniques
for Evolving Software Systems

Presented by:
Guillaume HABEN, University of Luxembourg, Luxembourg

Defense committee:

Prof. Dr. Mike Papadakis, = Chairman, University of Luxembourg, Luxembaurg
Dr. Maxime Cordy, Vice-chairman, University of Luxembourg, Luxembourg R
Prof. Dr. Yves Le Traon, Supervisor, University of Luxembourg, Luxembourg '
Prof. Dr. Arie Van Deursen, Member & TU Delft, The Netherlands o
Prof. Dr. Javier Tuyq, Reviewer, Universidad de Oviedo, Spain

Member & Y
Date: Reviewer, ' A

June 29", 2023

UNIVERSITE DU
LUXEMBOURG

securityandtrust.lu

Introduction

1. Per project, in time and non-time sensitive settings

Classifier (Random Forest) performance

Revisions

Training set Test set
F.Y F.Y
4 A 4
rl l"5 r8 10
4+ttt
o0 00 oo ® o0 060 oo O ©
[) () ©
LA
=
® Flaky Test =.

B Non Flaky Test

83

Introduction Contribution I Contribution II

2. FlakyCat performance per category

Example of a test misclassified
as Async wait

I @Test

2 public void shouldPickANewServer[...] () throws
Throwable {

M) 5 5]

4 Thread thread = new Thread(() -> {
try {
startTheLeaderSwitching.await () ;
CoreClusterMember thelLeader = cluster.

awaitLeader () ;

switchLeader(theLeader);
} catch (TimeoutException |
InterruptedException e) {

11 // ignore

12 PH) i

Commit message:

“A latch was being release before ensuring that the condition
it was guarding for was fulfilled. This created a race that most
of the time was won by the desired thread, but it was flaky.”

84

Introduction Contribution I Contribution II

2. FlakyCat performance per category

Interpretation

Example of a test misclassified

as Async wait

I @Test
2 public void shouldPickANewServer[...] () throws

3 |5

13 el

14}

Throwable {

-]

Thread thread = new Thread(() -> {
Ly
startTheLeaderSwitching.await () ;
CoreClusterMember theleader = cluster.
awaitLeader () ;
switchLeader (theLeader);
} catch (TimeoutException |
InterruptedException e) {
// ignore

}Y) i

Commit message:

“A latch was being release before ensuring that the condition
it was guarding for was fulfilled. This created a race that most
of the time was won by the desired thread, but it was flaky.”

Performance varies depending on the categories

85

Introduction Contribution I Contribution II Contribution III Contribution IV Conclusion

2. FlakyCat Metrics

Then 3 possibilities:

Micro-averaged: all samples equally contribute to the final averaged
metric

Macro-averaged: all classes equally contribute to the final averaged
metric

Weighted-averaged: each classes’s contribution to the average is
weighted by its size (1vsAll)

Introduction Contribution I Contribution II Contribution III Contribution IV Conclusion

2. FlakyCat Validation

10-fold Cross validation on the training set (75% of data)
Check performance on hold-out set (25% of data)

Unseen data in hold-out set (no leakage of oversampled elements

Introduction Contribution I Contribution II

Contribution III Contribution IV

Conclusion

2. FlakyCat

Test smells prediction

Journals & Magazines > IEEE Transactions on Software... > Volume: 49 Issue: 4 @

Flakify: A Black-Box, Language Model-Based Predictor for Flaky Tests
Publisher: IEEE PDF

Sakina Fatima © ; Taher A. Ghaleb ® ; Lionel Briand ® All Authors

Conferences > 2021 IEEE/ACM 43rd Internatio... @

FlakeFlagger: Predicting Flakiness Without Rerunning Tests

Publisher: IEEE PDF

Abdulrahman Alshammari ; Christopher Morris ; Michael Hilton ; Jonathan Bell ~All Authors

RESEARCH-ARTICLE

On the use of test smells for prediction of flaky tests

Andre Endo Silvia Vergilio Authors Info & Claims

Authors: Bruno Camara, R Marco Silva

SAST '21: Proceedings of the 6th Brazilian Symposium on Systematic and Automated Software Testing » September 2021 «
Pages 46-54 « hitps://doi.org/10.1145/3482909.3482916

Published: 12 October 2021 Publication History, | M) Check for podatesy

RESEARCH-ARTICLE

Static test flakiness prediction: How Far Can We Go?

Authors: Valeria Pontillo, Fabio Palomba, Filomena Ferrucci Authors Info & Claims

Empirical Software Engineering, Volume 27, Issue 7 ¢ Dec 2022 « https://doi.org/10.1007/s10664-022-10227-1

Published: 01 December 2022 Publication History

RESEARCH-ARTICLE

Toward static test flakiness prediction: a feasibility study

Authors: Valeria Pontillo, Fabio Palomba, Filomena Ferrucci Authors Info & Claims

MaLTESQuE 2021: Proceedings of the 5th International Workshop on Machine Learning Techniques for Software Quality
Evolution ¢ August 2021 « Pages 19—24 ¢ https://doi.org/10.1145/3472674.3473981

Published: 23 August 2021 Publication History M) Check for updates |

Yin®g f =

Yine f =

¥Ying f =

88

Introduction

Contribution I

Contribution II

Contribution III

Contribution IV

Conclusion

Genetic Programming

Global formula

GP Models
SBFL + Change Metrics

%”3

GP Models
SBFL + Size Metrics

{c:)} %30

N/

TABLE VIII: RQ3: The effectiveness of the voting between
60 different GP-evolved models, 30 from SBFL with change
metrics, and 30 from using SBFL with size metrics. ‘Perc’

denotes Percentage

Project Total acc wef (Ryef)

@l @3 @5 @10 mean med
Hbase 8 3 5 6 6 9.62 (12) 1.5 (2)
Ignite 14 2 4 4 4 | 22861 (24) 17514
Pulsar 10 3 6 7 9 7.30 (12) 2.0 (5)
Alluxio 1 1 1 2 61.83 (22) 9.0 (10)
Neo4;j 1 2 2 2 19.67 (42) 1.0 (18)
Total 38 10 18 20 23 94.61 (19) 3.5(05)
Perc (%) 100 26 47 53 61 - -

~50% flaky classes identified in the top 3

89

Introduction Contribution I Contribution II Contribution III Contribution IV

Conclusion

Chromium

Table 8.5: Number of builds containing each studied test type. All builds contain
flaky tests. 1/4 contain fault-revealing tests. Among the failing builds, 3/4 contain
only fault-revealing tests that are flaky in other builds.

Builds containing Number
Flaky tests 10,000
Fault-revealing tests 2,415
Fault-revealing flaky tests 1,974
Exclusively fault-revealing flaky tests 1,766

90

Introduction Contribution I Contribution II Contribution III Contribution IV Conclusion

Chromium

Training set Test set

A A
r N N

Build timeline

1 I !] l
T T I T T T f f } } >

0 b&(wo bm,oao
Flaky tests
* * ® Passing tests
= *k a9 b % Failing tests }Non Egriests
o0
©0
ox

Figure 8.4: The data collected from Chromium’s CI consists of flaky, fault-revealing
and passing tests spread across 10,000 builds. The build timeline ranges from
build by to b1o,000 and depicts the distribution of the collected tests: flaky tests are
spread across all builds and fault-revealing tests happen occasionally. Due to a
large number of passing tests, we collected them from the bg oo build (i.e. at the
end of our training set).

91

Introduction Contribution I

Contribution II

Contribution III

Contribution IV

Conclusion

Conclusion

92

Introduction Contribution I Contribution II Contribution III Contribution IV Conclusion

°—
o—
o_

93

