A Qualitative Study on the Sources, Impacts, and
Mitigation Strategies of Flaky Tests

Sarra Habchi, Guillaume Haben, Mike Papadakis, Maxime Cordy, Yves Le Traon

ICST 2022

Flakiness

Flaky tests exhibit both a passing and a failing
result with the same code.

- Crippled CI
- Wasted resources

- Unreliable test suite

REA

THE BUILD FAILED AGAIN 6

IR AR R A) .l1et

Google

e 16% of tests exhibit
some flakiness.

e 2-16% of the testing
budget is dedicated to
rerunning flaky tests.

Research on flaky tests

- Identification of flakiness
€ Characteristics
€ Categories

- Study of flakiness in different environments
= Detection / Prediction
= Fixing

Grey Literature Review

e Mitigation strategies
e Identify gaps

K

Practitioner interviews

e Semi-structured
e 1/ participants
e Diverse roles & companies

10

Sources
Impacts
Strategies

Challenges encountered by practitioners

= Automation opportunities

> Test |

> CUT |

> Usually leveraged in flakiness studies

> Testing frameworks

- Manual testers

> Orchestratlon between system components

“It only takes one timeout in the communication between two
services or other middleware to make a test fail randomly”

,,:,-4 T T L% 187
/l/’ > ‘, ‘ %,‘:r’ ' ‘. ‘1’

> External factors (0S, firmware, hardware)

- Infrastructure

“The test is getting throttled because we do not have

enough CPU or memory quota for our database”

-> Wasting development resources
> Disrupting the CI and slowing down development

-> Undermining system reliability

"l

r !

Rl

«y

.\l L)
'7

| ot

> Lenient testing policy

-> Writing less tests
- Quality deterioration
- SR f‘éi |

S LD

[

W
[g :
% »
‘II - . ,' A
itk
|
«“y
AR \
;‘I f 'z”;'. 4
i o3 i .
m “‘_I o :‘.’ By ; : J

“the more flakiness it is, the greater the acceptance of
less than ideal test coverage, and that leads to a

degradation of the software quality”
ik SN :__ S ﬁ'ii : ! |

-> Disguise non-deterministic features

- Deliver buggy product

-> Debug in production

20

1. Prevention
2. Detection
3. Treatment

4. Support

2

-Avoid testing anti-patterns (e.g., cupcake & ice
cream cone)

> Establish testing guidelines

-Enforce guidelines with static analysis

1. Prevention

> Establish testing guidelines
- Setup a reliable infrastructure
- Limit external dependencies

-> Mock when possible

24

©@

-> Reruns
- Manual analysis (trace, screenshots)

- Test history

- Fix

- Ignore

- Quarantine
-> Remove

- Document

3. Treatment

26

3. Treatment

- Fix: rarely achieved
- Ignore

- Quarantine

- Remove

- Document

27

3. Treatment

- Fix: rarely achieved
> Ignore: “a very low flake rate is not worth inspecting”
- Quarantine

- Remove

- Document

28

- Fix: rarely achieved
> Ignore: “a very low flake rate is not worth inspecting”
- Quarantine

-> Remove: “it’s better to remove the test due to its cost”

- Document

29

/.. Support 0

- Monitor and log system and test outcomes -

30

O

-> Monitor and log system and test outcomes =

-Facilitate reproduction and root cause analysis

31

O

-> Monitor and log system and test outcomes =
-Facilitate reproduction and root cause analysis
> Establish testing workflows

-Test selection and prioritisation

32

- Reproduction and root cause identification (debug)

34

- Reproduction and root cause identification

- Prediction (using historical data, logs)

- Reproduction and root cause identification
- Prediction
> Fine-grained analysis

= flake rate, flakiness level estimation

- Reproduction and root cause identification
- Prediction

- Fine-grained analysis

- Test validation:

= Static analysis (e.g. sleep)

- Fix: rarely achieved

“It only takes one timeout in the communication
between two services or other middleware to make a _
test fail randomly” > Quarantine

- Ignore: “avery low flake rate is not worth inspecting”

- Remove: “it’s better to remove the test due to its cost”

- 4Py o) » i 1 . peA - . S
‘m«yi o G Ni gl T B : > Document

' Y g ‘
,:71, T 2]

- Disguise non-deterministic
features

- Deliver buggy product

- Debug in production

