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Flakiness

Flaky tests exhibit both a passing and a failing 
result with the same code.
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→ Crippled CI

→ Wasted resources

→ Unreliable test suite
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● 16% of tests exhibit 
some flakiness. 

● 2-16% of the testing 
budget is dedicated to 
rerunning flaky tests.
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Research on flaky tests 

➔ Identification of flakiness
◆ Characteristics
◆ Categories

➔ Study of flakiness in different environments
➔ Detection / Prediction
➔ Fixing
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How do practitioners perceive and mitigate 
flakiness?
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Grey  Literature Review Practitioner interviews

● Mitigation strategies
● Identify gaps

● Semi-structured
● 14 participants
● Diverse roles & companies



Analytical categories

● Sources 

● Impacts 

● Strategies 

● Challenges encountered by practitioners 

⇒ Automation opportunities
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Sources
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→ Test 

→ CUT

→ Testing frameworks

→ Manual testers
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Usually leveraged in flakiness studies
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➔ Orchestration between system components

“It only takes one timeout in the communication between two 
services or other middleware to make a test fail randomly”



   → External factors (OS, firmware, hardware)

   → Infrastructure

“The test is getting throttled because we do not have 

enough CPU or memory quota for our database”
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Impacts
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→ Wasting development resources 

→ Disrupting the CI and slowing down development

→ Undermining system reliability
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→ Lenient testing policy 
→ Writing less tests

→ Quality deterioration
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“the more flakiness it is, the greater the acceptance of
less than ideal test coverage, and that leads to a 

degradation of the software quality”
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➔ Disguise non-deterministic features

➔ Deliver buggy product

➔ Debug in production
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Mitigation
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Strategies

1. Prevention

2. Detection

3. Treatment

4. Support
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1. Prevention

→ Establish testing guidelines

-Avoid testing anti-patterns (e.g., cupcake & ice 
cream cone)

-Enforce guidelines with static analysis

23



1. Prevention

→ Establish testing guidelines

→ Setup a reliable infrastructure

→ Limit external dependencies

→ Mock when possible
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2. Detection

→ Reruns

→ Manual analysis (trace, screenshots)

→ Test history
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3. Treatment

→ Fix

→ Ignore

→ Quarantine

→ Remove

→ Document
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3. Treatment

→ Fix: rarely achieved

→ Ignore

→ Quarantine

→ Remove

→ Document
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3. Treatment

→ Fix: rarely achieved

→ Ignore: “a very low flake rate is not worth inspecting”

→ Quarantine

→ Remove

→ Document
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3. Treatment

→ Fix: rarely achieved

→ Ignore: “a very low flake rate is not worth inspecting”

→ Quarantine

→ Remove: “it’s better to remove the test due to its cost”

→ Document
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4. Support

→ Monitor and log system and test outcomes

30



4. Support

→ Monitor and log system and test outcomes

-Facilitate reproduction and root cause analysis
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4. Support

→ Monitor and log system and test outcomes

-Facilitate reproduction and root cause analysis

→ Establish testing workflows

-Test selection and prioritisation
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Automation Opportunities



→ Reproduction and root cause identification (debug) 
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→ Reproduction and root cause identification 

→ Prediction (using historical data, logs)
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→ Reproduction and root cause identification 

→ Prediction

→ Fine-grained analysis 

⇒ flake rate, flakiness level estimation
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→ Reproduction and root cause identification 

→ Prediction

→ Fine-grained analysis 

→ Test validation:

⇒ Static analysis (e.g. sleep)
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