
A Qualitative Study on the Sources, Impacts, and
Mitigation Strategies of Flaky Tests

Sarra Habchi, Guillaume Haben, Mike Papadakis, Maxime Cordy, Yves Le Traon

1

ICST 2022

2

3

4

Flakiness

Flaky tests exhibit both a passing and a failing
result with the same code.

5

→ Crippled CI

→ Wasted resources

→ Unreliable test suite

6

● 16% of tests exhibit
some flakiness.

● 2-16% of the testing
budget is dedicated to
rerunning flaky tests.

7

8

Research on flaky tests

➔ Identification of flakiness
◆ Characteristics
◆ Categories

➔ Study of flakiness in different environments
➔ Detection / Prediction
➔ Fixing

9

How do practitioners perceive and mitigate
flakiness?

10

Grey Literature Review Practitioner interviews

● Mitigation strategies
● Identify gaps

● Semi-structured
● 14 participants
● Diverse roles & companies

Analytical categories

● Sources

● Impacts

● Strategies

● Challenges encountered by practitioners

⇒ Automation opportunities

11

Sources
12

→ Test

→ CUT

→ Testing frameworks

→ Manual testers

13

Usually leveraged in flakiness studies

14

➔ Orchestration between system components

“It only takes one timeout in the communication between two
services or other middleware to make a test fail randomly”

 → External factors (OS, firmware, hardware)

 → Infrastructure

“The test is getting throttled because we do not have

enough CPU or memory quota for our database”

15

Impacts
16

→ Wasting development resources

→ Disrupting the CI and slowing down development

→ Undermining system reliability

17

→ Lenient testing policy
→ Writing less tests

→ Quality deterioration

18

“the more flakiness it is, the greater the acceptance of
less than ideal test coverage, and that leads to a

degradation of the software quality”

19

➔ Disguise non-deterministic features

➔ Deliver buggy product

➔ Debug in production

20

Mitigation
21

Strategies

1. Prevention

2. Detection

3. Treatment

4. Support

22

1. Prevention

→ Establish testing guidelines

-Avoid testing anti-patterns (e.g., cupcake & ice
cream cone)

-Enforce guidelines with static analysis

23

1. Prevention

→ Establish testing guidelines

→ Setup a reliable infrastructure

→ Limit external dependencies

→ Mock when possible

24

2. Detection

→ Reruns

→ Manual analysis (trace, screenshots)

→ Test history

25

3. Treatment

→ Fix

→ Ignore

→ Quarantine

→ Remove

→ Document

26

3. Treatment

→ Fix: rarely achieved

→ Ignore

→ Quarantine

→ Remove

→ Document

27

3. Treatment

→ Fix: rarely achieved

→ Ignore: “a very low flake rate is not worth inspecting”

→ Quarantine

→ Remove

→ Document

28

3. Treatment

→ Fix: rarely achieved

→ Ignore: “a very low flake rate is not worth inspecting”

→ Quarantine

→ Remove: “it’s better to remove the test due to its cost”

→ Document

29

4. Support

→ Monitor and log system and test outcomes

30

4. Support

→ Monitor and log system and test outcomes

-Facilitate reproduction and root cause analysis

31

4. Support

→ Monitor and log system and test outcomes

-Facilitate reproduction and root cause analysis

→ Establish testing workflows

-Test selection and prioritisation

32

33

Automation Opportunities

→ Reproduction and root cause identification (debug)

34

→ Reproduction and root cause identification

→ Prediction (using historical data, logs)

35

→ Reproduction and root cause identification

→ Prediction

→ Fine-grained analysis

⇒ flake rate, flakiness level estimation

36

→ Reproduction and root cause identification

→ Prediction

→ Fine-grained analysis

→ Test validation:

⇒ Static analysis (e.g. sleep)

37

