
What Made This Test Flake? Pinpointing Classes Responsible 
for Test Flakiness

International Conference on Software Maintenance and Evolution, 3-7 October, 2022

Guillaume HabenSarra Habchi

Mike Papadakis Maxime Cordy Yves Le TraonAdriano Franci

Jeongju Sohn

1



Outline
● Background on flakiness research

● Motivation

● Data collection

● Research Questions

● Conclusion

2



What is a flaky test?
❝ A test that passes and fails 

for the same version of a program ❞

3

Infrastructure

CodeEnvironment

Infrastructure
● Overloaded CI
● Differences in Testing/Production
● Different Operating Systems, 

versions...

Code
● Concurrency issues
● Usage of Date / Time
● Test order dependencies
● I/O (File, database)
● Network calls
● Asynchronous waits

Environment
● Hardware
● External services
● Time of the day



Flakiness research focus

4

Detection techniques

Fixing 
techniquesML based

Vocabulary, test smells, 
FlakeFlagger, code metrics, 
runtime metrics, heart beat, 

Flakify…

Tools
Deflaker, iDFlakies, Shaker…

Empirical studies

Open source / Industrial context

Java, Python

Causes / Prevalence



Flakiness research focus

Limits of detection techniques

ML-based accuracy ranges from ~70 to ~90%

5



Flakiness research focus

When a test is said to be 
flaky, what’s next?

6

Limits of detection techniques



Flakiness research focus

Limits of fixing techniques

7

● Many prevalent categories (Async waits, concurrency) are not 
addressed

● Often target only one category of flakiness

e.g. order dependencies (ODRepair, iFixFlakies)

randomness (Flex)



Motivation

8

Help developers find components responsible for flakiness in production code

- ~20% flakiness originates from CUT, nonetheless important to fix

- Non-specific to a category of flakiness

- Retarget Fault Localisation techniques to detect “flaky” components



A word on Spectrum-Based Fault Localization

9

SBFL is used to find buggy elements (statements, lines, methods…)
SBFL calculates the suspiciousness score based on coverage matrix and PASS / FAIL results of tests
Several formulas have been introduced like Tarantula, Ochiai, DStar…
SBFL gives you a ranked list of statements



Data collection

10

Looking for flakiness-fixing commits: flaky tests with corresponding “flaky” class

1. Search Look for commits in large Java projects containing flaky keyword

2. Inspect Limit to atomic commits fixing CUT (fix, repair, patch keywords)

3. Coverage Build, run the test suite and get the coverage matrix for all tests

4. Extract Flaky test, “flaky” class, coverages information, cause of flakiness



Data collection

11



Research questions

12

● RQ1 Are SBFL-based approaches effective in identifying flaky classes?

● RQ2 How do code and change metrics contribute to the identification of flaky classes?

● RQ4 How does an SBFL-based approach perform for different flakiness categories?

● RQ3 How can ensemble learning improve the identification of flaky classes?



RQ1 Are SBFL-based approaches effective in identifying flaky classes?

13

Evaluation metrics

Accuracy acc@n: # flaky classes ranked in the top n

Wasted effort wef: # classes inspected before reaching the flaky class

Baseline Rwef: Relative effort wrt # covered classes. Between 0 and 100. 

SBFL gives a ranked list of classes to inspect. 
1st most suspicious, last least suspicious.



RQ1 Are SBFL-based approaches effective in identifying flaky classes?

14

We adapt Spectrum-Based Fault Localization for flakiness

For each class, we compute:

ef : # flaky test executing the class 
es : # stable test executing the class 
nf : # flaky test not executing the class 
ns : # stable test not executing the class 

We use Genetic Programming to evolve a new formula combining the existing ones



RQ1 Are SBFL-based approaches effective in identifying flaky classes?

15



RQ2 How do code and change metrics contribute to the identification of flaky classes?

16



RQ2 How do code and change metrics contribute to the identification of flaky classes?

17

Adding flakiness metrics to SBFL does not improve results 
On the contrary, we see some improvements with change and size metrics



RQ3 How can ensemble learning improve the identification of flaky classes?

18

Ensemble learning via voting

60 GP models

30 GP models 
SBFL + size metrics

30 GP models 
SBFL + change metrics



RQ3 How can ensemble learning improve the identification of flaky classes?

19



RQ4 How does an SBFL-based approach perform for different flakiness categories?

20



Conclusion

21

● We need to further help developers deal with flakiness

● We propose an approach using SBFL to find components in the code causing flakiness

● Ensemble learning gives the best results with ~50% flaky classes identified in the top 3


