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>10k software engineers

>100m lines of code projects

>1 000 commits per hour
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Challenges
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Testing Large Software Systems

Handle Large Amounts of Tests Ensure Test Quality Manage Multi-Environments

Test Coverage

Avoid Anti-Patterns

Test Robustness

Hundreds of thousands of tests

Regression Test Selection

Test Case Prioritization Test Refactoring

Distributed Testing

Platform Dependencies

Dev, Test, Prod
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“A flaky test is a test that 

can both pass or fail when executed several times 

on the same version of a program”

Definition



Why does it matter?

7J. Micco, The State of Continuous Integration Testing @Google, ICST 2017

Major problem in modern software testing

Flaky tests often accounts for 1-5%

Flakiness increases costs both time-wise and computer-wise

At Google: up to 16% of testing budget spent just to rerun flaky tests

This leads to technical debt, bad quality and impacts other 
testing strategies relying on deterministic tests
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C. Leong, A. Singh, M. Papadakis, Y. Le Traon, J. Micco, Assessing transition-based test selection algorithms at google, ICSE 2019



Concrete example of a flaky test
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# https://github.com/python-telegram-bot/python-telegram-bot/blob/master/tests/test_updater.py
def test_idle(self, updater, caplog):
       updater.start_polling( 0.01)
       Thread(target=partial(self.signal_sender, updater=updater)).start()
       with caplog.at_level(logging.INFO):
           updater.idle()
       rec = caplog.records[ -2]
       assert rec.getMessage().startswith( 'Received signal {signal.SIGTERM}')
       assert rec.levelname == 'INFO'
       rec = caplog.records[ -1]
       assert rec.getMessage().startswith( 'Scheduler has been shut down' )
       assert rec.levelname == 'INFO'
       # If we get this far, idle() ran through
       sleep(0.5)
       assert updater.running is False
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Motivation
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Current Research on Flakiness Prediction

Most of the previous research focuses on predicting flaky tests using vocabulary features 
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Case study: Chromium
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Large project with its own custom CI Framework: LuCI 

~80 million LoC
Built for hundreds of OS and versions
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Definitions
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Builds

1 build: specific revision

Either:

Builder: Compiles the project
- Specific version, instrumentations, OS

Tester: Runs regression tests
 ~200,000 tests (unit, integration, GUI)
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Definitions
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Tests and Failures

Fault-revealing test

Flaky failure

Fault-triggering failure

Execution within 
a build

Flaky test

Identified as

Failure
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Identifying flaky tests
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FAULT-REV
EALING
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Data collection
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Dataset

Number of flaky and fault-revealing test per builds
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Question
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Are current approaches appropriate to classify test failures?



Retrieved features
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The flake rate is often used in the industry 
to quantify the level of flakiness of a test
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Experimental settings
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Model training

Random Forest Classifier
Time-sensitive analysis
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Performance of existing approaches
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¾ of fault-triggering failures are classified as flaky (missed 
faults)
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Cross-build analysis
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⅓ of fault-revealing tests were found to be flaky 
in previous builds
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Performance when focusing on failures
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Training on failures improves the 
performance but further work is required
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Flaky tests are valuable as they can reveal faults

¾ of fault-triggering failures are misclassified as flaky (missed faults)

Need for execution-focused prediction methods

Take-away messages
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