
1

The Importance of Accounting for Execution Failures
when Predicting Test Flakiness

Authors:
Guillaume Haben
Sarra Habchi,
John Micco,
Mark Harman,
Mike Papadakis,
Maxime Cordy,
Yves Le Traon

Date:
October 30th, 2024

Presented by:
Guillaume HABEN, University of Luxembourg, Luxembourg

University of Luxembourg, Luxembourg
Ubisoft, Canada
Broadcom, USA
University College London & META, UK
University of Luxembourg, Luxembourg
University of Luxembourg, Luxembourg
University of Luxembourg, Luxembourg

2

Jim

Introduction Context Benchmark Evaluation Take away

3

Introduction Context Benchmark Evaluation Take away

4

>10k software engineers

>100m lines of code projects

>1 000 commits per hour

Introduction Context Benchmark Evaluation Take away

Challenges

5

Testing Large Software Systems

Handle Large Amounts of Tests Ensure Test Quality Manage Multi-Environments

Test Coverage

Avoid Anti-Patterns

Test Robustness

Hundreds of thousands of tests

Regression Test Selection

Test Case Prioritization Test Refactoring

Distributed Testing

Platform Dependencies

Dev, Test, Prod

Introduction Context Benchmark Evaluation Take away

“A flaky test is a test that

can both pass or fail when executed several times

on the same version of a program”

Definition

Why does it matter?

7J. Micco, The State of Continuous Integration Testing @Google, ICST 2017

Major problem in modern software testing

Flaky tests often accounts for 1-5%

Flakiness increases costs both time-wise and computer-wise

At Google: up to 16% of testing budget spent just to rerun flaky tests

This leads to technical debt, bad quality and impacts other
testing strategies relying on deterministic tests

Introduction Context Benchmark Evaluation Take away

C. Leong, A. Singh, M. Papadakis, Y. Le Traon, J. Micco, Assessing transition-based test selection algorithms at google, ICSE 2019

Concrete example of a flaky test

8

https://github.com/python-telegram-bot/python-telegram-bot/blob/master/tests/test_updater.py
def test_idle(self, updater, caplog):
 updater.start_polling(0.01)
 Thread(target=partial(self.signal_sender, updater=updater)).start()
 with caplog.at_level(logging.INFO):
 updater.idle()
 rec = caplog.records[-2]
 assert rec.getMessage().startswith('Received signal {signal.SIGTERM}')
 assert rec.levelname == 'INFO'
 rec = caplog.records[-1]
 assert rec.getMessage().startswith('Scheduler has been shut down')
 assert rec.levelname == 'INFO'
 # If we get this far, idle() ran through
 sleep(0.5)
 assert updater.running is False

Introduction Context Benchmark Evaluation Take away

Motivation

9

Current Research on Flakiness Prediction

Most of the previous research focuses on predicting flaky tests using vocabulary features

Introduction Context Benchmark Evaluation Take away

Case study: Chromium

10

Large project with its own custom CI Framework: LuCI

~80 million LoC
Built for hundreds of OS and versions

Introduction Context Evaluation Take awayBenchmark

Definitions

11

Builds

1 build: specific revision

Either:

Builder: Compiles the project
- Specific version, instrumentations, OS

Tester: Runs regression tests
 ~200,000 tests (unit, integration, GUI)

Introduction Context Benchmark Evaluation Take away

Definitions

12

Tests and Failures

Fault-revealing test

Flaky failure

Fault-triggering failure

Execution within
a build

Flaky test

Identified as

Failure

Introduction Context Evaluation Take awayBenchmark

Identifying flaky tests

13

FAULT-REV
EALING

Introduction Context Evaluation Take awayBenchmark

Data collection

14

Dataset

Number of flaky and fault-revealing test per builds

Introduction Context Evaluation Take awayBenchmark

Question

15

Introduction Context Evaluation Take awayBenchmark

Are current approaches appropriate to classify test failures?

Retrieved features

16

The flake rate is often used in the industry
to quantify the level of flakiness of a test

Introduction Context Evaluation Take awayBenchmark

Experimental settings

17

Model training

Random Forest Classifier
Time-sensitive analysis

Introduction Context Evaluation Take awayBenchmark

18

Performance of existing approaches

TRAIN SET

80%

TEST SET

20%

Ti
m

el
in

e
/

b
u

ild
s

¾ of fault-triggering failures are classified as flaky (missed
faults)

Introduction Context Evaluation Take awayBenchmark

Cross-build analysis

19

⅓ of fault-revealing tests were found to be flaky
in previous builds

Introduction Context Evaluation Take awayBenchmark

Performance when focusing on failures

20

TRAIN SET

80%

TEST SET

20%

Ti
m

el
in

e
/

b
u

ild
s

Training on failures improves the
performance but further work is required

Introduction Context Evaluation Take awayBenchmark

21

Flaky tests are valuable as they can reveal faults

¾ of fault-triggering failures are misclassified as flaky (missed faults)

Need for execution-focused prediction methods

Take-away messages

Introduction Context Evaluation Take awayBenchmark

22

The Importance of Accounting for Execution Failures
when Predicting Test Flakiness

Date:
October 30th, 2024

Presented by:
Guillaume HABEN, University of Luxembourg, Luxembourg

Link to paper:

